139 resultados para Standard Emissions Factor
Resumo:
Potential risks of a secondary formation of polychlorinated dibenzodioxins/furans (PCDD/Fs) were assessed for two cordierite-based, wall-through diesel particulate filters (DPFs) for which soot combustion was either catalyzed with an iron- or a copper-based fuel additive. A heavy duty diesel engine was used as test platform, applying the eight-stage ISO 8178/4 C1 cycle. DPF applications neither affected the engine performance, nor did they increase NO, NO2, CO, and CO2 emissions. The latter is a metric for fuel consumption. THC emissions decreased by about 40% when deploying DPFs. PCDD/F emissions, with a focus on tetra- to octachlorinated congeners, were compared under standard and worst case conditions (enhanced chlorine uptake). The iron-catalyzed DPF neither increased PCDD/F emissions, nor did it change the congener pattern, even when traces of chlorine became available. In case of copper, PCDD/F emissions increased by up to 3 orders of magnitude from 22 to 200 to 12 700 pg I-TEQ/L with fuels of < 2, 14, and 110 microg/g chlorine, respectively. Mainly lower chlorinated DD/Fs were formed. Based on these substantial effects on PCDD/F emissions, the copper-catalyzed DPF system was not approved for workplace applications, whereas the iron system fulfilled all the specifications of the Swiss procedures for DPF approval (VERT).
Resumo:
Transforming growth factor beta (TGF-beta) and platelet-derived growth factor A (PDGFAlpha) play a central role in tissue morphogenesis and repair, but their interplay remain poorly understood. The nuclear factor I C (NFI-C) transcription factor has been implicated in TGF-beta signaling, extracellular matrix deposition, and skin appendage pathologies, but a potential role in skin morphogenesis or healing had not been assessed. To evaluate this possibility, we performed a global gene expression analysis in NFI-C(-/-) and wild-type embryonic primary murine fibroblasts. This indicated that NFI-C acts mostly to repress gene expression in response to TGF-beta1. Misregulated genes were prominently overrepresented by regulators of connective tissue inflammation and repair. In vivo skin healing revealed a faster inflammatory stage and wound closure in NFI-C(-/-) mice. Expression of PDGFA and PDGF-receptor alpha were increased in wounds of NFI-C(-/-) mice, explaining the early recruitment of macrophages and fibroblasts. Differentiation of fibroblasts to contractile myofibroblasts was also elevated, providing a rationale for faster wound closure. Taken together with the role of TGF-beta in myofibroblast differentiation, our results imply a central role of NFI-C in the interplay of the two signaling pathways and in regulation of the progression of tissue regeneration.
Resumo:
Macrophage migration inhibitory factor (MIF), originally identified as a cytokine secreted by T lymphocytes, was found recently to be both a pituitary hormone and a mediator released by immune cells in response to glucocorticoid stimulation. We report here that the insulin-secreting beta cell of the islets of Langerhans expresses MIF and that its production is regulated by glucose in a time- and concentration-dependent manner. MIF and insulin colocalize by immunocytochemistry within the secretory granules of the pancreatic islet beta cells, and once released, MIF appears to regulate insulin release in an autocrine fashion. In perifusion studies performed with isolated rat islets, immunoneutralization of MIF reduced the first and second phase of the glucose-induced insulin secretion response by 39% and 31%, respectively. Conversely, exogenously added recombinant MIF was found to potentiate insulin release. Constitutive expression of MIF antisense RNA in the insulin-secreting INS-1 cell line inhibited MIF protein synthesis and decreased significantly glucose-induced insulin release. MIF is therefore a glucose-dependent, islet cell product that regulates insulin secretion in a positive manner and may play an important role in carbohydrate metabolism.
Resumo:
BACKGROUND: Highway maintenance workers are constantly and simultaneously exposed to traffic-related particle and noise emissions, and both have been linked to increased cardiovascular morbidity and mortality in population-based epidemiology studies. OBJECTIVES: We aimed to investigate short-term health effects related to particle and noise exposure. METHODS: We monitored 18 maintenance workers, during as many as five 24-hour periods from a total of 50 observation days. We measured their exposure to fine particulate matter (PM2.5), ultrafine particles, noise, and the cardiopulmonary health endpoints: blood pressure, pro-inflammatory and pro-thrombotic markers in the blood, lung function and fractional exhaled nitric oxide (FeNO) measured approximately 15 hours post-work. Heart rate variability was assessed during a sleep period approximately 10 hours post-work. RESULTS: PM2.5 exposure was significantly associated with C-reactive protein and serum amyloid A, and negatively associated with tumor necrosis factor α. None of the particle metrics were significantly associated with von Willebrand factor or tissue factor expression. PM2.5 and work noise were associated with markers of increased heart rate variability, and with increased HF and LF power. Systolic and diastolic blood pressure on the following morning were significantly associated with noise exposure after work, and non-significantly associated with PM2.5. We observed no significant associations between any of the exposures and lung function or FeNO. CONCLUSIONS: Our findings suggest that exposure to particles and noise during highway maintenance work might pose a cardiovascular health risk. Actions to reduce these exposures could lead to better health for this population of workers.
Resumo:
Purpose: To investigate the accuracy of 4 clinical instruments in the detection of glaucomatous damage. Methods: 102 eyes of 55 test subjects (Age mean = 66.5yrs, range = [39; 89]) underwent Heidelberg Retinal Tomography (HRTIII), (disc area<2.43); and standard automated perimetry (SAP) using Octopus (Dynamic); Pulsar (TOP); and Moorfields Motion Displacement Test (MDT) (ESTA strategy). Eyes were separated into three groups 1) Healthy (H): IOP<21mmHg and healthy discs (clinical examination), 39 subjects, 78 eyes; 2) Glaucoma suspect (GS): Suspicious discs (clinical examination), 12 subjects, 15 eyes; 3) Glaucoma (G): progressive structural or functional loss, 14 subjects, 20 eyes. Clinical diagnostic precision was examined using the cut-off associated with the p<5% normative limit of MD (Octopus/Pulsar), PTD (MDT) and MRA (HRT) analysis. The sensitivity, specificity and accuracy were calculated for each instrument. Results: See table Conclusions: Despite the advantage of defining glaucoma suspects using clinical optic disc examination, the HRT did not yield significantly higher accuracy than functional measures. HRT, MDT and Octopus SAP yielded higher accuracy than Pulsar perimetry, although results did not reach statistical significance. Further studies are required to investigate the structure-function correlations between these instruments.
Resumo:
PURPOSE OF REVIEW: Amplification and overexpression of the epidermal growth factor receptor (EGFR) gene are a hallmark of primary glioblastoma (45%), making it a prime target for therapy. In addition, these amplifications are frequently associated with oncogenic mutations in the extracellular domain. However, efforts at targeting the EGFR tyrosine kinase using small molecule inhibitors or antibodies have shown disappointing efficacy in clinical trials for newly diagnosed or recurrent glioblastoma. Here, we review recent insights into molecular mechanisms relevant for effective targeting of the EGFR pathway. RECENT FINDINGS: Molecular workup of glioblastoma tissue of patients under treatment with small molecule inhibitors has established drug concentrations in the tumor tissue, and has shed light on the effectiveness of target inhibition and respective effects on pathway signaling. Further, functional analyses of interaction of small molecule inhibitors with distinct properties to bind to the active or inactive form of EGFR have provided new insights that will impact the choice of drugs. Finally, vaccination approaches targeting the EGFRvIII mutant featuring a tumor-specific antigen have shown promising results that warrant larger controlled clinical trials. SUMMARY: A combination of preclinical and clinical studies at the molecular level has provided new insights that will allow refining strategies for targeting the EGFR pathway in glioblastoma.
Resumo:
Staphylococcus aureus harbors redundant adhesins mediating tissue colonization and infection. To evaluate their intrinsic role outside of the staphylococcal background, a system was designed to express them in Lactococcus lactis subsp. cremoris 1363. This bacterium is devoid of virulence factors and has a known genetic background. A new Escherichia coli-L. lactis shuttle and expression vector was constructed for this purpose. First, the high-copy-number lactococcal plasmid pIL253 was equipped with the oriColE1 origin, generating pOri253 that could replicate in E. coli. Second, the lactococcal promoters P23 or P59 were inserted at one end of the pOri253 multicloning site. Gene expression was assessed by a luciferase reporter system. The plasmid carrying P23 (named pOri23) expressed luciferase constitutively at a level 10,000 times greater than did the P59-containing plasmid. Transcription was absent in E. coli. The staphylococcal clumping factor A (clfA) gene was cloned into pOri23 and used as a model system. Lactococci carrying pOri23-clfA produced an unaltered and functional 130-kDa ClfA protein attached to their cell walls. This was indicated both by the presence of the protein in Western blots of solubilized cell walls and by the ability of ClfA-positive lactococci to clump in the presence of plasma. ClfA-positive lactococci had clumping titers (titer of 4,112) similar to those of S. aureus Newman in soluble fibrinogen and bound equally well to solid-phase fibrinogen. These experiments provide a new way to study individual staphylococcal pathogenic factors and might complement both classical knockout mutagenesis and modern in vivo expression technology and signature tag mutagenesis.
Resumo:
Medication adherence is a well-known risk factor in internal medicine. However in oncology this dimension is emerging due to the increasing number of oral formulations. First results in the oral oncology literature suggest that patients' ability to cope with medical prescription decreases with time. This might preclude patients from reaching clinical outcomes. Factors impacting on medication adherence to oral oncology treatments have not been yet extensively described neither strategies to address them and support patient's needs. Oncologists and pharmacists in our University outpatient settings performed a pilot study which aimed at measuring and facilitating adherence to oral oncology treatments and at understanding determinants of patient's adherence. The ultimate purpose of such a patient-centered and interdisciplinary collaboration would be to promote patient self-management and complement the standard medical follow-up.
Resumo:
Therapeutic drug monitoring (TDM) aims to optimize treatments by individualizing dosage regimens based on the measurement of blood concentrations. Dosage individualization to maintain concentrations within a target range requires pharmacokinetic and clinical capabilities. Bayesian calculations currently represent the gold standard TDM approach but require computation assistance. In recent decades computer programs have been developed to assist clinicians in this assignment. The aim of this survey was to assess and compare computer tools designed to support TDM clinical activities. The literature and the Internet were searched to identify software. All programs were tested on personal computers. Each program was scored against a standardized grid covering pharmacokinetic relevance, user friendliness, computing aspects, interfacing and storage. A weighting factor was applied to each criterion of the grid to account for its relative importance. To assess the robustness of the software, six representative clinical vignettes were processed through each of them. Altogether, 12 software tools were identified, tested and ranked, representing a comprehensive review of the available software. Numbers of drugs handled by the software vary widely (from two to 180), and eight programs offer users the possibility of adding new drug models based on population pharmacokinetic analyses. Bayesian computation to predict dosage adaptation from blood concentration (a posteriori adjustment) is performed by ten tools, while nine are also able to propose a priori dosage regimens, based only on individual patient covariates such as age, sex and bodyweight. Among those applying Bayesian calculation, MM-USC*PACK© uses the non-parametric approach. The top two programs emerging from this benchmark were MwPharm© and TCIWorks. Most other programs evaluated had good potential while being less sophisticated or less user friendly. Programs vary in complexity and might not fit all healthcare settings. Each software tool must therefore be regarded with respect to the individual needs of hospitals or clinicians. Programs should be easy and fast for routine activities, including for non-experienced users. Computer-assisted TDM is gaining growing interest and should further improve, especially in terms of information system interfacing, user friendliness, data storage capability and report generation.
Resumo:
A generic optical biosensing strategy was developed that relies on the absorbance enhancement phenomenon occurring in a multiple scattering matrix. Experimentally, inserts made of glass fiber membrane were placed into microplate wells in order to significantly lengthen the trajectory of the incident light through the sample and therefore increase the corresponding absorbance. Enhancement factor was calculated by comparing the absorbance values measured for a given amount of dye with and without the absorbance-enhancing inserts in the wells. Moreover, the dilution of dye in solutions with different refractive indices (RI) clearly revealed that the enhancement factor increased with the ΔRI between the membrane and the surrounding medium, reaching a maximum value (EF>25) when the membranes were dried. On this basis, two H2O2-biosensing systems were developed based on the biofunctionalization of the glass fiber inserts either with cytochrome c or horseradish peroxidase (HRP) and the analytical performances were systematically compared with the corresponding bioassay in solution. The efficiency of the absorbance-enhancement approach was particularly clear in the case of the cytochrome c-based biosensor with a sensitivity gain of 40 folds and wider dynamic range. Therefore, the developed strategy represents a promising way to convert standard colorimetric bioassays into optical biosensors with improved sensitivity.
Resumo:
Activation of dendritic cells (DC) by microbial products via Toll-like receptors (TLR) is instrumental in the induction of immunity. In particular, TLR signaling plays a major role in the instruction of Th1 responses. The development of Th2 responses has been proposed to be independent of the adapter molecule myeloid differentiation factor 88 (MyD88) involved in signal transduction by TLRs. In this study we show that flagellin, the bacterial stimulus for TLR5, drives MyD88-dependent Th2-type immunity in mice. Flagellin promotes the secretion of IL-4 and IL-13 by Ag-specific CD4(+) T cells as well as IgG1 responses. The Th2-biased responses are associated with the maturation of DCs, which are shown to express TLR5. Flagellin-mediated DC activation requires MyD88 and induces NF-kappaB-dependent transcription and the production of low levels of proinflammatory cytokines. In addition, the flagellin-specific response is characterized by the lack of secretion of the Th1-promoting cytokine IL-12 p70. In conclusion, this study suggests that flagellin and, more generally, TLR ligands can control Th2 responses in a MyD88-dependent manner.
Resumo:
Introduced in 2008, the femtosecond laser is a promising new technological advance which plays an ever increasing role in cataract surgery where it automates the three main surgical steps: corneal incision, capsulotomy and lens fragmentation. The proven advantages over manual surgery are: a better quality of incision with reduced induced astigmatism; increased reliability and reproducibility of the capsulotomy with increased stability of the implanted lens; a reduction in the use of ultrasound. Regarding refractive results or safety, however, no prospective randomized study to date has shown significant superiority compared with standard manual technique. The significant extra cost generated by this laser, undertaken by the patient, is a limiting factor for both its use and study. This review outlines the potential benefits of femtosecond-laser-assisted cataract surgery due to the automation of key steps and the safety of this new technology.