31 resultados para Spatial Research


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present research deals with an application of artificial neural networks for multitask learning from spatial environmental data. The real case study (sediments contamination of Geneva Lake) consists of 8 pollutants. There are different relationships between these variables, from linear correlations to strong nonlinear dependencies. The main idea is to construct a subsets of pollutants which can be efficiently modeled together within the multitask framework. The proposed two-step approach is based on: 1) the criterion of nonlinear predictability of each variable ?k? by analyzing all possible models composed from the rest of the variables by using a General Regression Neural Network (GRNN) as a model; 2) a multitask learning of the best model using multilayer perceptron and spatial predictions. The results of the study are analyzed using both machine learning and geostatistical tools.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study details a method to statistically determine, on a millisecond scale and for individual subjects, those brain areas whose activity differs between experimental conditions, using single-trial scalp-recorded EEG data. To do this, we non-invasively estimated local field potentials (LFPs) using the ELECTRA distributed inverse solution and applied non-parametric statistical tests at each brain voxel and for each time point. This yields a spatio-temporal activation pattern of differential brain responses. The method is illustrated here in the analysis of auditory-somatosensory (AS) multisensory interactions in four subjects. Differential multisensory responses were temporally and spatially consistent across individuals, with onset at approximately 50 ms and superposition within areas of the posterior superior temporal cortex that have traditionally been considered auditory in their function. The close agreement of these results with previous investigations of AS multisensory interactions suggests that the present approach constitutes a reliable method for studying multisensory processing with the temporal and spatial resolution required to elucidate several existing questions in this field. In particular, the present analyses permit a more direct comparison between human and animal studies of multisensory interactions and can be extended to examine correlation between electrophysiological phenomena and behavior.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radioactive soil-contamination mapping and risk assessment is a vital issue for decision makers. Traditional approaches for mapping the spatial concentration of radionuclides employ various regression-based models, which usually provide a single-value prediction realization accompanied (in some cases) by estimation error. Such approaches do not provide the capability for rigorous uncertainty quantification or probabilistic mapping. Machine learning is a recent and fast-developing approach based on learning patterns and information from data. Artificial neural networks for prediction mapping have been especially powerful in combination with spatial statistics. A data-driven approach provides the opportunity to integrate additional relevant information about spatial phenomena into a prediction model for more accurate spatial estimates and associated uncertainty. Machine-learning algorithms can also be used for a wider spectrum of problems than before: classification, probability density estimation, and so forth. Stochastic simulations are used to model spatial variability and uncertainty. Unlike regression models, they provide multiple realizations of a particular spatial pattern that allow uncertainty and risk quantification. This paper reviews the most recent methods of spatial data analysis, prediction, and risk mapping, based on machine learning and stochastic simulations in comparison with more traditional regression models. The radioactive fallout from the Chernobyl Nuclear Power Plant accident is used to illustrate the application of the models for prediction and classification problems. This fallout is a unique case study that provides the challenging task of analyzing huge amounts of data ('hard' direct measurements, as well as supplementary information and expert estimates) and solving particular decision-oriented problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present research deals with an important public health threat, which is the pollution created by radon gas accumulation inside dwellings. The spatial modeling of indoor radon in Switzerland is particularly complex and challenging because of many influencing factors that should be taken into account. Indoor radon data analysis must be addressed from both a statistical and a spatial point of view. As a multivariate process, it was important at first to define the influence of each factor. In particular, it was important to define the influence of geology as being closely associated to indoor radon. This association was indeed observed for the Swiss data but not probed to be the sole determinant for the spatial modeling. The statistical analysis of data, both at univariate and multivariate level, was followed by an exploratory spatial analysis. Many tools proposed in the literature were tested and adapted, including fractality, declustering and moving windows methods. The use of Quan-tité Morisita Index (QMI) as a procedure to evaluate data clustering in function of the radon level was proposed. The existing methods of declustering were revised and applied in an attempt to approach the global histogram parameters. The exploratory phase comes along with the definition of multiple scales of interest for indoor radon mapping in Switzerland. The analysis was done with a top-to-down resolution approach, from regional to local lev¬els in order to find the appropriate scales for modeling. In this sense, data partition was optimized in order to cope with stationary conditions of geostatistical models. Common methods of spatial modeling such as Κ Nearest Neighbors (KNN), variography and General Regression Neural Networks (GRNN) were proposed as exploratory tools. In the following section, different spatial interpolation methods were applied for a par-ticular dataset. A bottom to top method complexity approach was adopted and the results were analyzed together in order to find common definitions of continuity and neighborhood parameters. Additionally, a data filter based on cross-validation was tested with the purpose of reducing noise at local scale (the CVMF). At the end of the chapter, a series of test for data consistency and methods robustness were performed. This lead to conclude about the importance of data splitting and the limitation of generalization methods for reproducing statistical distributions. The last section was dedicated to modeling methods with probabilistic interpretations. Data transformation and simulations thus allowed the use of multigaussian models and helped take the indoor radon pollution data uncertainty into consideration. The catego-rization transform was presented as a solution for extreme values modeling through clas-sification. Simulation scenarios were proposed, including an alternative proposal for the reproduction of the global histogram based on the sampling domain. The sequential Gaussian simulation (SGS) was presented as the method giving the most complete information, while classification performed in a more robust way. An error measure was defined in relation to the decision function for data classification hardening. Within the classification methods, probabilistic neural networks (PNN) show to be better adapted for modeling of high threshold categorization and for automation. Support vector machines (SVM) on the contrary performed well under balanced category conditions. In general, it was concluded that a particular prediction or estimation method is not better under all conditions of scale and neighborhood definitions. Simulations should be the basis, while other methods can provide complementary information to accomplish an efficient indoor radon decision making.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a statistical model for the quantification of the weight of fingerprint evidence. Contrarily to previous models (generative and score-based models), our model proposes to estimate the probability distributions of spatial relationships, directions and types of minutiae observed on fingerprints for any given fingermark. Our model is relying on an AFIS algorithm provided by 3M Cogent and on a dataset of more than 4,000,000 fingerprints to represent a sample from a relevant population of potential sources. The performance of our model was tested using several hundreds of minutiae configurations observed on a set of 565 fingermarks. In particular, the effects of various sub-populations of fingers (i.e., finger number, finger general pattern) on the expected evidential value of our test configurations were investigated. The performance of our model indicates that the spatial relationship between minutiae carries more evidential weight than their type or direction. Our results also indicate that the AFIS component of our model directly enables us to assign weight to fingerprint evidence without the need for the additional layer of complex statistical modeling involved by the estimation of the probability distributions of fingerprint features. In fact, it seems that the AFIS component is more sensitive to the sub-population effects than the other components of the model. Overall, the data generated during this research project contributes to support the idea that fingerprint evidence is a valuable forensic tool for the identification of individuals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The integration of geophysical data into the subsurface characterization problem has been shown in many cases to significantly improve hydrological knowledge by providing information at spatial scales and locations that is unattainable using conventional hydrological measurement techniques. In particular, crosshole ground-penetrating radar (GPR) tomography has shown much promise in hydrology because of its ability to provide highly detailed images of subsurface radar wave velocity, which is strongly linked to soil water content. Here, we develop and demonstrate a procedure for inverting together multiple crosshole GPR data sets in order to characterize the spatial distribution of radar wave velocity below the water table at the Boise Hydrogeophysical Research Site (BHRS) near Boise, Idaho, USA. Specifically, we jointly invert 31 intersecting crosshole GPR profiles to obtain a highly resolved and consistent radar velocity model along the various profile directions. The model is found to be strongly correlated with complementary neutron porosity-log data and is further corroborated by larger-scale structural information at the BHRS. This work is an important prerequisite to using crosshole GPR data together with existing hydrological measurements for improved groundwater flow and contaminant transport modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Conventional magnetic resonance imaging (MRI) techniques are highly sensitive to detect multiple sclerosis (MS) plaques, enabling a quantitative assessment of inflammatory activity and lesion load. In quantitative analyses of focal lesions, manual or semi-automated segmentations have been widely used to compute the total number of lesions and the total lesion volume. These techniques, however, are both challenging and time-consuming, being also prone to intra-observer and inter-observer variability.Aim: To develop an automated approach to segment brain tissues and MS lesions from brain MRI images. The goal is to reduce the user interaction and to provide an objective tool that eliminates the inter- and intra-observer variability.Methods: Based on the recent methods developed by Souplet et al. and de Boer et al., we propose a novel pipeline which includes the following steps: bias correction, skull stripping, atlas registration, tissue classification, and lesion segmentation. After the initial pre-processing steps, a MRI scan is automatically segmented into 4 classes: white matter (WM), grey matter (GM), cerebrospinal fluid (CSF) and partial volume. An expectation maximisation method which fits a multivariate Gaussian mixture model to T1-w, T2-w and PD-w images is used for this purpose. Based on the obtained tissue masks and using the estimated GM mean and variance, we apply an intensity threshold to the FLAIR image, which provides the lesion segmentation. With the aim of improving this initial result, spatial information coming from the neighbouring tissue labels is used to refine the final lesion segmentation.Results:The experimental evaluation was performed using real data sets of 1.5T and the corresponding ground truth annotations provided by expert radiologists. The following values were obtained: 64% of true positive (TP) fraction, 80% of false positive (FP) fraction, and an average surface distance of 7.89 mm. The results of our approach were quantitatively compared to our implementations of the works of Souplet et al. and de Boer et al., obtaining higher TP and lower FP values.Conclusion: Promising MS lesion segmentation results have been obtained in terms of TP. However, the high number of FP which is still a well-known problem of all the automated MS lesion segmentation approaches has to be improved in order to use them for the standard clinical practice. Our future work will focus on tackling this issue.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present work assessed the effects of intracerebroventricular injections (2x5 mg/2.5 ml) of recombined human nerve growth factor (rhNGF) at postnatal days 2 and 3 upon the development of spatial learning capacities in rats. The treated rats were trained at the age of 22 days to escape onto an invisible platform at a fixed position in space in a Morris navigation task. For half of the subjects, the training position was also cued, a procedure aimed at facilitating escape and reducing attention to the distant spatial cues. At the age of 2 months all the rats were retrained in the same task. Treatment effects were found in both immature and adult rats. The injection of NGF induced a slight alteration of the immature rats' performance. In contrast, a marked impairment of spatial abilities was shown in the 2-month-old rats. The most consistent effects were a significant increase in the escape latency and a decrease bias towards the training platform area during probe trials. The reduction of spatial memory was particularly marked if the subjects had been trained in a cued condition. Taken together, these experiments reveal that an acute pharmacological treatment that leads to transient modifications during early development might induce a behavioural change long after treatment. Thus, the development and the maintenance of an accurate spatial representation are tightly related to the development of brain structures that could be altered by precocious NGF administrations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Calcium-containing (CaC) crystals, including basic calcium phosphate (BCP) and calcium pyrophosphate dihydrate (CPP), are associated with destructive forms of osteoarthritis (OA). We assessed their distribution and biochemical and morphologic features in human knee OA cartilage. METHODS: We prospectively included 20 patients who underwent total knee replacement (TKR) for primary OA. CaC crystal characterization and identification involved Fourier-transform infra-red spectrometry and scanning electron microscopy of 8 to 10 cartilage zones of each knee, including medial and lateral femoral condyles and tibial plateaux and the intercondyle zone. Differential expression of genes involved in the mineralization process between cartilage with and without calcification was assessed in samples from 8 different patients by RT-PCR. Immunohistochemistry and histology studies were performed in 6 different patients. RESULTS: Mean (SEM) age and body mass index of patients at the time of TKR was 74.6 (1.7) years and 28.1 (1.6) kg/m², respectively. Preoperative X-rays showed joint calcifications (chondrocalcinosis) in 4 cases only. The medial femoro-tibial compartment was the most severely affected in all cases, and mean (SEM) Kellgren-Lawrence score was 3.8 (0.1). All 20 OA cartilages showed CaC crystals. The mineral content represented 7.7% (8.1%) of the cartilage weight. All patients showed BCP crystals, which were associated with CPP crystals for 8 joints. CaC crystals were present in all knee joint compartments and in a mean of 4.6 (1.7) of the 8 studied areas. Crystal content was similar between superficial and deep layers and between medial and femoral compartments. BCP samples showed spherical structures, typical of biological apatite, and CPP samples showed rod-shaped or cubic structures. The expression of several genes involved in mineralization, including human homolog of progressive ankylosis, plasma-cell-membrane glycoprotein 1 and tissue-nonspecific alkaline phosphatase, was upregulated in OA chondrocytes isolated from CaC crystal-containing cartilages. CONCLUSIONS: CaC crystal deposition is a widespread phenomenon in human OA articular cartilage involving the entire knee cartilage including macroscopically normal and less weight-bearing zones. Cartilage calcification is associated with altered expression of genes involved in the mineralisation process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A series of 4 experiments examined the performance of rats with retrohippocampal lesions on a spatial water-maze task. The animals were trained to find and escape onto a hidden platform after swimming in a large pool of opaque water. The platform was invisible and could not be located using olfactory cues. Successful escape performance required the rats to develop strategies of approaching the correct location with reference solely to distal extramaze cues. The lesions encompassed the entire rostro-caudal extent of the lateral and medial entorhinal cortex, and included parts of the pre- and para-subiculum, angular bundle and subiculum. Groups ECR 1 and 2 sustained only partial damage of the subiculum, while Group ECR+S sustained extensive damage. These groups were compared with sham-lesion and unoperated control groups. In Expt 1A, a profound deficit in spatial localisation was found in groups ECR 1 and ECR+S, the rats receiving all training postoperatively. In Expt 1B, these two groups showed hyperactivity in an open-field. In Expt 2, extensive preoperative training caused a transitory saving in performance of the spatial task by group ECR 2, but comparisons with the groups of Expt 1A revealed no sustained improvement, except on one measure of performance in a post-training transfer test. All rats were then given (Expt 3) training on a cueing procedure using a visible platform. The spatial deficit disappeared but, on returning to the normal hidden platform procedure, it reappeared. Nevertheless, a final transfer test, during which the platform was removed from the apparatus, revealed a dissociation between two independent measures of performance: the rats with ECR lesions failed to search for the hidden platform but repeatedly crossed its correct location accurately during traverses of the entire pool. This partial recovery of performance was not (Expt 4) associated with any ability to discriminate between two locations in the pool. The apparently selective recovery of aspects of spatial memory is discussed in relation to O'Keefe and Nadel's (1978) spatial mapping theory of hippocampal function. We propose a modification of the theory in terms of a dissociation between procedural and declarative subcomponents of spatial memory. The declarative component is a flexible access system in which information is stored in a form independent of action. It is permanently lost after the lesion. The procedural component is "unmasked" by the retrohippocampal lesion giving rise to the partial recovery of spatial localisation performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Disparate ecological datasets are often organized into databases post hoc and then analyzed and interpreted in ways that may diverge from the purposes of the original data collections. Few studies, however, have attempted to quantify how biases inherent in these data (for example, species richness, replication, climate) affect their suitability for addressing broad scientific questions, especially in under-represented systems (for example, deserts, tropical forests) and wild communities. Here, we quantitatively compare the sensitivity of species first flowering and leafing dates to spring warmth in two phenological databases from the Northern Hemisphere. One-PEP725-has high replication within and across sites, but has low species diversity and spans a limited climate gradient. The other-NECTAR-includes many more species and a wider range of climates, but has fewer sites and low replication of species across sites. PEP725, despite low species diversity and relatively low seasonality, accurately captures the magnitude and seasonality of warming responses at climatically similar NECTAR sites, with most species showing earlier phenological events in response to warming. In NECTAR, the prevalence of temperature responders significantly declines with increasing mean annual temperature, a pattern that cannot be detected across the limited climate gradient spanned by the PEP725 flowering and leafing data. Our results showcase broad areas of agreement between the two databases, despite significant differences in species richness and geographic coverage, while also noting areas where including data across broader climate gradients may provide added value. Such comparisons help to identify gaps in our observations and knowledge base that can be addressed by ongoing monitoring and research efforts. Resolving these issues will be critical for improving predictions in understudied and under-sampled systems outside of the temperature seasonal mid-latitudes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vision is the most synthetic sensory channel and it provides specific information about the relative position of distant landmarks during visual exploration. In this paper we propose that visual exploration, as assessed by the recording of eye movements, offers an original method to analyze spatial cognition and to reveal alternative adaptation strategies in people with intellectual disabilities (ID). Our general assumption is that eye movement exploration may simultaneously reveal whether, why, and how, compensatory strategies point to specific difficulties related to neurological symptoms. An understanding of these strategies will also help in the development of optimal rehabilitation procedures.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents the general regression neural networks (GRNN) as a nonlinear regression method for the interpolation of monthly wind speeds in complex Alpine orography. GRNN is trained using data coming from Swiss meteorological networks to learn the statistical relationship between topographic features and wind speed. The terrain convexity, slope and exposure are considered by extracting features from the digital elevation model at different spatial scales using specialised convolution filters. A database of gridded monthly wind speeds is then constructed by applying GRNN in prediction mode during the period 1968-2008. This study demonstrates that using topographic features as inputs in GRNN significantly reduces cross-validation errors with respect to low-dimensional models integrating only geographical coordinates and terrain height for the interpolation of wind speed. The spatial predictability of wind speed is found to be lower in summer than in winter due to more complex and weaker wind-topography relationships. The relevance of these relationships is studied using an adaptive version of the GRNN algorithm which allows to select the useful terrain features by eliminating the noisy ones. This research provides a framework for extending the low-dimensional interpolation models to high-dimensional spaces by integrating additional features accounting for the topographic conditions at multiple spatial scales. Copyright (c) 2012 Royal Meteorological Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Allocentric spatial memory, the memory for locations coded in relation to objects comprising our environment, is a fundamental component of episodic memory and is dependent on the integrity of the hippocampal formation in adulthood. Previous research from different laboratories reported that basic allocentric spatial memory abilities are reliably observed in children after 2 years of age. Based on work performed in monkeys and rats, we had proposed that the functional maturation of direct entorhinal cortex projections to the CA1 field of the hippocampus might underlie the emergence of basic allocentric spatial memory. We also proposed that the protracted development of the dentate gyrus and its projections to the CA3 field of the hippocampus might underlie the development of high-resolution allocentric spatial memory capacities, based on the essential contribution of these structures to the process known as pattern separation. Here, we present an experiment designed to assess the development of spatial pattern separation capacities and its impact on allocentric spatial memory performance in children from 18 to 48 months of age. We found that: (1) allocentric spatial memory performance improved with age, (2) as compared to younger children, a greater number of children older than 36 months advanced to the final stage requiring the highest degree of spatial resolution, and (3) children that failed at different stages exhibited difficulties in discriminating locations that required higher spatial resolution abilities. These results are consistent with the hypothesis that improvements in human spatial memory performance might be linked to improvements in pattern separation capacities.