101 resultados para Social evolution.
Resumo:
The role of ecology in the evolution and maintenance of arthropod sociality has received increasing research attention in recent years. In some organisms, such as halictine bees, polistine wasps, and social spiders, researchers are investigating the environmental factors that may contribute to high levels of variation in the degree of sociality exhibited both among and within species. Within lineages that include only eusocial members, such as ants and termites, studies focus more on identifying extrinsic factors that may contribute to the dramatic variation in colony size, number of queens, and division of labour that is evident across these species. In this review, I propose a comparative approach that seeks to identify environmental factors that may have a common influence across such divergent social arthropod groups. I suggest that seeking common biogeographic patterns in the distribution of social systems or key social traits may help us to identify ecological factors that play a common role in shaping the evolution of sociality across different organisms. I first review previous studies of social gradients that form along latitudinal and altitudinal axes. Within families and within species, many organisms show an increasing degree of sociality at lower latitudes and altitudes. In a smaller number of cases, organisms form larger groups or found nests cooperatively at higher latitudes and altitudes. I then describe several environmental factors that vary consistently along such gradients, including climate variables and abundance of predators, and outline their proposed role in the social systems of terrestrial arthropods. Finally, I map distributions of a social trait against several climatic factors in five case studies to demonstrate how future comparative studies could inform empirical research.
Resumo:
In recent years much progress has been made towards understanding the selective forces involved in the evolution of social behaviour including conflicts over reproduction among group members. Here, I argue that an important additional step necessary for advancing our understanding of the resolution of potential conflicts within insect societies is to consider the genetics of the behaviours involved. First, I discuss how epigenetic modifications of behaviour may affect conflict resolution within groups. Second, I review known natural polymorphisms of social organization to demonstrate that a lack of consideration of the genetic mechanisms involved may lead to erroneous explanations of the adaptive significance of behaviour. Third, I suggest that, on the basis of recent genetic studies of sexual conflict in Drosophila, it is necessary to reconsider the possibility of within-group manipulation by means of chemical substances (i.e. pheromones). Fourth, I address the issue of direct versus indirect genetic effects, which is of particular importance for the study of behaviour in social groups. Fifth, I discuss the issue of how a genetic influence on dominance hierarchies and reproductive division of labour can have secondary effects, for example in the evolution of promiscuity. Finally, because the same sets of genes (e.g. those implicated in chemical signalling and the responses that are triggered) may be used even in species as divergent as ants, cooperative breeding birds and primates, an integration of genetic mechanisms into the field of social evolution may also provide unifying ideas.
Resumo:
We survey the population genetic basis of social evolution, using a logically consistent set of arguments to cover a wide range of biological scenarios. We start by reconsidering Hamilton's (Hamilton 1964 J. Theoret. Biol. 7, 1-16 (doi:10.1016/0022-5193(64)90038-4)) results for selection on a social trait under the assumptions of additive gene action, weak selection and constant environment and demography. This yields a prediction for the direction of allele frequency change in terms of phenotypic costs and benefits and genealogical concepts of relatedness, which holds for any frequency of the trait in the population, and provides the foundation for further developments and extensions. We then allow for any type of gene interaction within and between individuals, strong selection and fluctuating environments and demography, which may depend on the evolving trait itself. We reach three conclusions pertaining to selection on social behaviours under broad conditions. (i) Selection can be understood by focusing on a one-generation change in mean allele frequency, a computation which underpins the utility of reproductive value weights; (ii) in large populations under the assumptions of additive gene action and weak selection, this change is of constant sign for any allele frequency and is predicted by a phenotypic selection gradient; (iii) under the assumptions of trait substitution sequences, such phenotypic selection gradients suffice to characterize long-term multi-dimensional stochastic evolution, with almost no knowledge about the genetic details underlying the coevolving traits. Having such simple results about the effect of selection regardless of population structure and type of social interactions can help to delineate the common features of distinct biological processes. Finally, we clarify some persistent divergences within social evolution theory, with respect to exactness, synergies, maximization, dynamic sufficiency and the role of genetic arguments.
Resumo:
Identifying species exhibiting variation in social organization is an important step towards explaining the genetic and environmental factors underlying social evolution. In most studied populations of the ant Leptothorax acervorum, reproduction is shared among queens in multiple queen colonies (polygyny). By contrast, reports from other populations, but based on weaker evidence, suggest a single queen may monopolize all reproduction in multiple queen colonies (functional monogyny). Here we identify a marked polymorphism in social organization in this species, by conclusively showing that functional monogyny is exhibited in a Spanish population, showing that the social organization is stable and not purely a consequence of daughter queens overwintering, that daughter queen re-adoption is frequent and queen turnover is low. Importantly, we show that polygynous and functionally monogynous populations are not genetically distinct from one another based on mtDNA and nDNA. This suggests a recent evolutionary divergence between social phenotypes. Finally, when functionally monogynous and polygynous colonies were kept under identical laboratory conditions, social organization did not change, suggesting a genetic basis for the polymorphism. We discuss the implications of these findings to the study of reproductive skew.
Resumo:
The very diverse social systems of sweat bees make them interesting models to study social evolution. Here we focus on the dispersal behaviour and social organization of Halictus scabiosae, a common yet poorly known species of Europe. By combining field observations and genetic data, we show that females have multiple reproductive strategies, which generates a large diversity in the social structure of nests. A detailed microsatellite analysis of 60 nests revealed that 55% of the nests contained the offspring of a single female, whereas the rest had more complex social structures, with three clear cases of multiple females reproducing in the same nest and frequent occurrence of unrelated individuals. Drifting among nests was surprisingly common, as 16% of the 122 nests in the overall sample and 44% of the nests with complex social structure contained females that had genotypes consistent with being full-sisters of females sampled in other nests of the population. Drifters originated from nests with an above-average productivity and were unrelated to their nestmates, suggesting that drifting might be a strategy to avoid competition among related females. The sex-specific comparison of genetic differentiation indicated that dispersal was male-biased, which would reinforce local resource competition among females. The pattern of genetic differentiation among populations was consistent with a dynamic process of patch colonization and extinction, as expected from the unstable, anthropogenic habitat of this species. Overall, our data show that H. scabiosae varies greatly in dispersal behaviour and social organization. The surprisingly high frequency of drifters echoes recent findings in wasps and bees, calling for further investigation of the adaptive basis of drifting in the social insects.
Resumo:
Social groups face a fundamental problem of overcoming selfish individuals capable of destroying cooperation. In the social amoeba Dictyostelium discoideum, there is evidence that some clones ('cheaters') contribute disproportionately to the viable spores in a fruiting body while avoiding the dead stalk cell fate. It remains unclear, however, whether this cheating is actually the product of selection. Here, I report the results of an experimental evolution study designed to test whether clones of D. discoideum will evolve resistance to cheating in the laboratory with genetic variation created only through spontaneous mutation. Two strains, one green fluorescent protein (GFP)-labelled and one wild-type, were allowed to grow and develop together before the wild-type strain was removed and replaced with a naïve strain evolving in parallel. Over the course of 10 social generations, the GFP-labelled strain reliably increased its representation in the spores relative to control populations that had never experienced the competitor. This competitive advantage extended to the non-social, vegetative growth portion of the life cycle, but not to pairwise competition with two other strains. These results indicate strong antagonism between strains, mediated by ample mutational variation for cheating and also suggest that arms races between strains in the wild may be common.
Resumo:
Plasmids carry a wide range of genes that are often involved in bacterial social behaviour. The question of why such genes are frequently mobile has received increasing attention. Here, we use an explicit population genetic approach to model the evolution of plasmid-borne bacterial public goods production. Our findings highlight the importance of both transmission and relatedness as factors driving the evolution of plasmid-borne public goods production. We partition the effects of plasmid transfer of social traits into those of infectivity and the effect of increased relatedness. Our results demonstrate that, owing to its effect on relatedness, plasmid mobility increases the invasion and stability of public goods, in a way not seen in individually beneficial traits. In addition, we show that plasmid transfer increases relatedness when public goods production is rare but this effect declines when production is common, with both scenarios leading to an increase in the frequency of plasmid-borne public goods. Plasmids remain important vectors for the spread of social genes involved in bacterial virulence thus an understanding of their dynamics is highly relevant from a public health perspective.
Resumo:
Expression of colony social organization in fire ants appears to be under the control of a single Mendelian factor of large effect. Variation in colony queen number in Solenopsis invicta and its relatives is associated with allelic variation at the gene Gp-9, but not with variation at other unlinked genes; workers regulate queen identity and number on the basis of Gp-9 genotypic compatibility. Nongeneticfactors, such as prior social experience, queen reproductive status, and local environment, have negligible effects on queen number which illustrates the nearly complete penetrance of Gp-9. As predicted, queen number can be manipulated experimentally by altering worker Gp-9 genotype frequencies. The Gp-9 allele lineage associated with polygyny in South American fire? ants has been retained across multiple speciation events, which may signal the action of balancing selection to maintain social polymorphism in these species. Moreover positive selection is implicated in driving the molecular evolution of Gp-9 in association with the origin of polygyny. The identity of the product of Gp-9 as an odorant-binding protein suggests plausible scenarios for its direct involvement in the regulation of queen number via a role in chemical communication. While these and other lines of evidence show that Gp-9 represents a legitimate candidate gene of major effect, studies aimed at determining (i) the biochemical pathways in which GP-9 functions; (ii) the phenotypic effects of molecular variation at Gp-9 and other pathway genes; and (iii) the potential involvement of genes in linkage disequilibrium with Gp-9 are needed to elucidate the genetic architecture underlying social organization in fire ants. Information that reveals the links between molecular variation, individual phenotype, and colony-level behaviors, combined with behavioral models that incorporate details of the chemical communication involved in regulating queen number will yield a novel integrated view of the evolutionary changes underlying a key social adaptation.
Resumo:
Astract: The aim of this thesis was to investigate how the presence of multiple queens (polygyny) affects social organization in colonies of the ant Formica exsecta. This is important because polygyny results in reduced relatedness among colony members and therefore reflects a potential paradox for altruistic cooperation being explained by inclusive fitness theory. The reason for this is that workers in polygynous colonies rear no longer only their siblings (high inclusive fitness gain) but also more distantly ox even unrelated brood (low or no inclusive fitness gain). All research projects conducted in this thesis are novel and significant contributions to the understanding of the social evolution of insect societies. We used a mixture of experimental and observational methodologies in laboratory and field colonies of F. exsecta to examine four important aspects of social life that are impacted by polygyny. First, we investigated the influence of queen number on colony sex allocation and found that the number of queens present in a colony significantly affects colony sex ratio investment. The data were consistent with the queen-replenishment hypothesis, which is based on the observation that newly mated queens are often recruited back to their parental nest. According to this theory, colonies containing many queens should only produce males due to local resource competition (i.e. related queens compete for common resources), whereas colonies hosting few queens benefit most from producing new queens to ensure colony survival. Second, we examined how reproduction is partitioned among nestmate queens. We detected a novel pattern of reproductive partitioning whereby a high proportion of queens were completely specialized in the production of only a subset of offspring classes produced within a colony, which might translate into great differences in reproductive success between queens. Third, we could demonstrate that F. exsecta workers indiscriminately reared highly related and unrelated brood although such nepotistic behaviour (preferential rearing of relatives) would be predicted by inclusive fitness theory. The absence of nepotism is probably best explained by its negative effects on overall colony efficiency. Finally, we conducted a detailed population genetic analysis, which revealed that the genetic population structure is different for queens and workers. Our data were best explained with queens forming family-based groups (multicolonial population structure), whereas workers from several nests seemed to be grouped into larger unites (unicolonial population structure) with workers moving freely between neighbouring nests. Altogether, the presented work significantly increased our understanding of the complex organization of polygynous social insect colonies and shows how an important life history trait such as queen number affects social organization at various levels. Résumé: Le but de cette thèse était d'étudier comment la présence de plusieurs reines par colonie (polygynie) influence la vie sociale chez la fourmi Formica exsecta. Ce sujet est important parce que la polygynie chez les insectes sociaux présente un passible paradoxe au niveau de la théorie du "fitness inclusive". Ce paradoxe est basé sur le fait que les ouvrières n'élèvent plus uniquement leurs frères et soeurs (gain de "fitness inclusive" maximale), mais également des individus moins ou pas du tout apparentés (gain de "fitness inclusive" réduit ou absent). Tous les projets de recherche présentés au cours de cette thèse apportent une meilleure compréhension et connaissance au niveau de l'organisation des colonies chez les insectes sociaux. Nous avons employé des méthodes d'observation et de laboratoire afin de mettre en évidence des aspects importants de la vie sociale chez les fourmis influencés par la polygynie. Quatre aspects ont été caractérisés : (1) l'influence du nombre de reines sur le sexe ratio produit par la colonie. Nous avons démontré que les colonies contenant beaucoup de reines produisaient rarement des reines tandis que les colonies contenant peu de reines souvent investissaient beaucoup de ressources dans la production des reines. Ces résultats sont en accord avec la "queen-replenishment hypothesis" qui est basé sur l'observation que les nouvelles reines sont recrutées dans la colonie où elles étaient nées. Cette hypothèse postule que la production des reines est défavorable dans les colonies contenant beaucoup de reines, parce que ces reines apparentées, rentrent en compétition pour des ressources communes. Au contraire, la production des reines est favorable dans des colonies contenant peu de reines afin d'assurer la survie de la colonie ; (2) comment les reines dans une colonie répartissent leur reproduction. Nous avons mis en évidence un nouveau pattern de cette répartition où une grande proportion de reines est complètement spécialisée dans la production d'un seul type de couvain ce qui probablement aboutit à des différences significatives entre reines dans le succès reproducteur ; (3) la capacité des ouvrières à discriminer un couvain de soeur d'un couvain non apparenté. Les résultats ont montré que les ouvrières ne font pas de discrimination entre le couvain de soeur et le couvain non apparenté ce qui n'est pas en accord avec la théorie de la "fitness inclusive". Cette absence de discrimination est probablement due à des effets négatifs comme par exemple la diminution de la production du couvain; (4) la structure génétique d'une population de F. exsecta. Nous avons mis en évidence que la structure génétique entre des groupes de reines est significativement différente de la structure génétique entre des groupes d'ouvrières. Les données suggèrent que les reines forment des groupes basés sur une structure familiale tandis que les ouvrières sont groupées dans des unités plus grandes.
Resumo:
The role of ecological constraints in promoting sociality is currently much debated. Using a direct-fitness approach, we show this role to depend on the kin-discrimination mechanisms underlying social interactions. Altruism cannot evolve under spatially based discrimination, unless ecological constraints prevent complete dispersal. Increasing constraints enhances both the proportion of philopatric (and thereby altruistic) individuals and the level of altruistic investments conceded in pairwise interactions. Familiarity-based discrimination, by contrast, allows philopatry and altruism to evolve at significant levels even in the absence of ecological constraints. Increasing constraints further enhances the proportion of philopatric (and thereby altruistic) individuals but not the level of altruism conceded. Ecological constraints are thus more likely to affect social evolution in species in which restricted cognitive abilities, large group size, and/or limited period of associative learning force investments to be made on the basis of spatial cues.
Resumo:
Small societies of totipotent individuals are good systems in which to study the costs and benefits of group living that are central to the origin and maintenance of eusociality. For instance, in eusocial halictid bees, some females remain in their natal nest to help rear the next brood. Why do helpers stay in the nest? Do they really help, and if yes, is their contribution large enough to voluntarily forfeit direct reproduction? Here, we estimate the impact of helpers on colony survival and productivity in the sweat bee Halictus scabiosae. The number of helpers was positively associated with colony survival and productivity. Colonies from which we experimentally removed one helper produced significantly fewer offspring. However, the effect of helper removal was very small, on average. From the removal experiment, we estimated that one helper increased colony productivity by 0.72 additional offspring in colonies with one to three helpers, while the increase was smaller and not statistically significant in larger colonies. We conclude that helpers do actually help in this primitively eusocial bee, particularly in small colonies. However, the resulting increase in colony productivity is low, which suggests that helpers may be constrained in their role or may attempt to reproduce.
Resumo:
Understanding social evolution requires us to understand the processes regulating the number of breeders within social groups and how they partition reproduction. Queens in polygynous (multiple queens per colony) ants often seek adoption in established colonies instead of founding a new colony independently. This mode of dispersal leads to potential conflicts, as kin selection theory predicts that resident workers should favour nestmate queens over foreign queens. Here we compared the survival of foreign and resident queens as well as their relative reproductive share. We used the ant Formica exsecta to construct colonies consisting of one queen with workers related to this resident queen and introduced a foreign queen. We found that the survival of foreign queens did not differ from that of resident queens over a period of 136 days. However, the genetic analyses revealed that resident queens produced a 1.5-fold higher number of offspring than introduced queens, and had an equal or higher share in 80% of the colonies. These data indicate that some discrimination can occur against dispersing individuals and that dispersal can thus have costs in terms of direct reproduction for dispersing queens.
Resumo:
Eusocial societies are traditionally characterized by a reproductive division of labor, an overlap of generations, and cooperative care of the breeders' young. Eusociality was once thought to occur only in termites, ants, and some bee and wasp species, but striking evolutionary convergences have recently become apparent between the societies of these insects and those of cooperatively breeding birds and mammals. These parallels have blurred distinctions between cooperative breeding and eusociality, leading to calls for either drastically restricting or expanding wage of these terms. We favor the latter approach. Cooperative breeding and eusociality are not discrete phenomena, but rather form a continuum of fundamentally similar social systems whose main differences lie in the distribution of lifetime reproductive success among group members. Therefore we propose to array vertebrate and invertebrate cooperative breeders along a common axis, representing a standardized measure of reproductive variance, and to drop such (loaded) terms as ''primitive'' and ''advanced'' eusociality. The terminology we propose unites all occurrences of alloparental helping of kin under a single theoretical umbrella (e.g., Hamilton's rule). Thus, cooperatively breeding vertebrates can be regarded as eusocial, just as eusocial inverbrates are cooperative breeders. We believe this integrated approach will foster potentially revealing cross-taxon comparisons, which are essential to understanding social evolution in birds, mammals, and in sects.
Resumo:
The breeding system of social organisms affects many important aspects of social life. Some species vary greatly in the number of breeders per group, but the mechanisms and selective pressures contributing to the maintenance of this polymorphism in social structure remain poorly understood. Here, we take advantage of a genetic dataset that spans 15 years to investigate the dynamics of colony queen number within a socially polymorphic ant species. Our study population of Formica selysi has single- and multiple-queen colonies. We found that the social structure of this species is somewhat flexible: on average, each year 3.2% of the single-queen colonies became polygynous, and conversely 1.4% of the multiple-queen colonies became monogynous. The annualized queen replacement rates were 10.3% and 11.9% for single- and multiple-queen colonies, respectively. New queens were often but not always related to previous colony members. At the population level, the social polymorphism appeared stable. There was no genetic differentiation between single- and multiple-queen colonies at eight microsatellite loci, suggesting ongoing gene flow between social forms. Overall, the regular and bidirectional changes in queen number indicate that social structure is a labile trait in F. selysi, with neither form being favored within a time-frame of 15 years.
Resumo:
We investigate the coevolution between philopatry and altruism in island-model populations when kin recognition occurs through phenotype matching. In saturated environments, a good discrimination ability is a necessary prerequisite for the emergence of sociality. Discrimination decreases not only with the average phenotypic similarity between immigrants and residents (i.e., with environmental homogeneity and past gene flow) but also with the sampling variance of similarity distributions (a negative function of the number of traits sampled). Whether discrimination should rely on genetically or environmentally determined traits depends on the apportionment of phenotypic variance and, in particular, on the relative values of e (the among-group component of environmental variance) and r (the among-group component of genetic variance, which also measures relatedness among group members). If r exceeds e, highly heritable cues do better. Discrimination and altruism, however, remain low unless philopatry is enforced by ecological constraints. If e exceeds r, by contrast, nonheritable traits do better. High e values improve discrimination drastically and thus have the potential to drive sociality, even in the absence of ecological constraints. The emergence of sociality thus can be facilitated by enhancing e, which we argue is the main purpose of cue standardization within groups, as observed in many social insects, birds, and mammals, including humans.