37 resultados para Self-frequency Shift
Resumo:
During the last decade, many studies have been carried out to understand the effects of focal vibratory stimuli at various levels of the central nervous system and to study pathophysiological mechanisms of neurological disorders as well as the therapeutic effects of focal vibration in neurorehabilitation. This review aimed to describe the effects of focal vibratory stimuli in neurorehabilitation including the neurological diseases or disorders like stroke, spinal cord injury, multiple sclerosis, Parkinson's' disease and dystonia. In conclusion, focal vibration stimulation is well tolerated, effective and easy to use, and it could be used to reduce spasticity, to promote motor activity and motor learning within a functional activity, even in gait training, independent from etiology of neurological pathology. Further studies are needed in the future well- designed trials with bigger sample size to determine the most effective frequency, amplitude and duration of vibration application in the neurorehabilitation.
Resumo:
HLA-A2+ melanoma patients develop naturally a strong CD8+ T cell response to a self-peptide derived from Melan-A. Here, we have used HLA-A2/peptide tetramers to isolate Melan-A-specific T cells from tumor-infiltrated lymph nodes of two HLA-A2+ melanoma patients and analyzed their TCR beta chain V segment and complementarity determining region 3 length and sequence. We found a broad diversity in Melan-A-specific immune T-cell receptor (TCR) repertoires in terms of both TCR beta chain variable gene segment usage and clonal composition. In addition, immune TCR repertoires selected in the patients were not overlapping. In contrast to previously characterized CD8+ T-cell responses to viral infections, this study provides evidence against usage of highly restricted TCR repertoire in the natural response to a self-differentiation tumor antigen.
Resumo:
OBJECTIVE: To describe food habits and dietary intakes of athletic and non-athletic adolescents in Switzerland. SETTING: College, high schools and professional centers in the Swiss canton of Vaud. METHOD: A total of 3,540 subjects aged 9-19 y answered a self-reported anonymous questionnaire to assess lifestyles, physical plus sports activity and food habits. Within this sample, a subgroup of 246 subjects aged 11-15 also participated in an in-depth ancillary study including a 3 day dietary record completed by an interview with a dietician. RESULTS: More boys than girls reported engaging in regular sports activities (P<0.001). Adolescent food habits are quite traditional: up to 15 y, most of the respondents have a breakfast and eat at least two hot meals a day, the percentages decreasing thereafter. Snacking is widespread among adolescents (60-80% in the morning, 80-90% in the afternoon). Food habits among athletic adolescents are healthier and also are perceived as such in a higher proportion. Among athletic adolescents, consumption frequency is higher for dairy products and ready to eat (RTE) cereals, for fruit, fruit juices and salad (P<0.05 at least). Thus the athletic adolescent's food brings more micronutrients than the diet of their non-athletic counterparts. Within the subgroup (ancillary study), mean energy intake corresponds to requirements for age/gender group. CONCLUSIONS: Athletic adolescents display healthier food habits than non-athletic adolescents: this result supports the idea that healthy behavior tends to cluster and suggests that prevention programs among this age group should target simultaneously both sports activity and food habits.
Resumo:
Abnormalities in the topology of brain networks may be an important feature and etiological factor for psychogenic non-epileptic seizures (PNES). To explore this possibility, we applied a graph theoretical approach to functional networks based on resting state EEGs from 13 PNES patients and 13 age- and gender-matched controls. The networks were extracted from Laplacian-transformed time-series by a cross-correlation method. PNES patients showed close to normal local and global connectivity and small-world structure, estimated with clustering coefficient, modularity, global efficiency, and small-worldness (SW) metrics, respectively. Yet the number of PNES attacks per month correlated with a weakness of local connectedness and a skewed balance between local and global connectedness quantified with SW, all in EEG alpha band. In beta band, patients demonstrated above-normal resiliency, measured with assortativity coefficient, which also correlated with the frequency of PNES attacks. This interictal EEG phenotype may help improve differentiation between PNES and epilepsy. The results also suggest that local connectivity could be a target for therapeutic interventions in PNES. Selective modulation (strengthening) of local connectivity might improve the skewed balance between local and global connectivity and so prevent PNES events.
Resumo:
Business research and teaching institutions play an important role in shaping the way businesses perceive their relations to the broader society and its moral expectations. Hence, as ethical scandals recently arose in the business world, questions related to the civic responsibilities of business scholars and to the role business schools play in society have gained wider interest. In this article, I argue that these ethical shortcomings are at least partly resulting from the mainstream business model with its taken-for granted basic assumptions such as specialization or the value-neutrality of business research. Redefining the roles and civic responsibilities of business scholars for business practice implies therefore a thorough analysis of these assumptions if not their redefinition. The takenforgrantedness of the mainstream business model is questioned by the transformation of the societal context in which business activities are embedded. Its value-neutrality in turn is challenged by self-fulfilling prophecy effects, which highlight the normative influence of business schools. In order to critically discuss some basic assumptions of mainstream business theory, I propose to draw parallels with the corporate citizenship concept and the stakeholder theory. Their integrated approach of the relation between business practice and the broader society provides interesting insights for the social reembedding of business research and teaching.
Resumo:
Ubiquitin ligases play a pivotal role in substrate recognition and ubiquitin transfer, yet little is known about the regulation of their catalytic activity. Nedd4 (neural-precursor-cell-expressed, developmentally down-regulated 4)-2 is an E3 ubiquitin ligase composed of a C2 domain, four WW domains (protein-protein interaction domains containing two conserved tryptophan residues) that bind PY motifs (L/PPXY) and a ubiquitin ligase HECT (homologous with E6-associated protein C-terminus) domain. In the present paper we show that the WW domains of Nedd4-2 bind (weakly) to a PY motif (LPXY) located within its own HECT domain and inhibit auto-ubiquitination. Pulse-chase experiments demonstrated that mutation of the HECT PY-motif decreases the stability of Nedd4-2, suggesting that it is involved in stabilization of this E3 ligase. Interestingly, the HECT PY-motif mutation does not affect ubiquitination or down-regulation of a known Nedd4-2 substrate, ENaC (epithelial sodium channel). ENaC ubiquitination, in turn, appears to promote Nedd4-2 self-ubiquitination. These results support a model in which the inter- or intra-molecular WW-domain-HECT PY-motif interaction stabilizes Nedd4-2 by preventing self-ubiquitination. Substrate binding disrupts this interaction, allowing self-ubiquitination of Nedd4-2 and subsequent degradation, resulting in down-regulation of Nedd4-2 once it has ubiquitinated its target. These findings also point to a novel mechanism employed by a ubiquitin ligase to regulate itself differentially compared with substrate ubiquitination and stability.
Resumo:
The Smart canula concept allows for collapsed cannula insertion, and self-expansion within a vein of the body. (A) Computational fluid dynamics, and (B) bovine experiments (76+/-3.8 kg) were performed for comparative analyses, prior to (C) the first clinical application. For an 18F access, a given flow of 4 l/min (A) resulted in a pressure drop of 49 mmHg for smart cannula versus 140 mmHg for control. The corresponding Reynolds numbers are 680 versus 1170, respectively. (B) For an access of 28F, the maximal flow for smart cannula was 5.8+/-0.5 l/min versus 4.0+/-0.1 l/min for standard (P<0.0001), for 24F 5.5+/-0.6 l/min versus 3.2+/-0.4 l/min (P<0.0001), and for 20F 4.1+/-0.3 l/min versus 1.6+/-0.3 l/min (P<0.0001). The flow obtained with the smart cannula was 270+/-45% (20F), 172+/-26% (24F), and 134+/-13% (28F) of standard (one-way ANOVA, P=0.014). (C) First clinical application (1.42 m2) with a smart cannula showed 3.55 l/min (100% predicted) without additional fluids. All three assessment steps confirm the superior performance of the smart cannula design.
Resumo:
Background : In the present article, we propose an alternative method for dealing with negative affectivity (NA) biases in research, while investigating the association between a deleterious psychosocial environment at work and poor mental health. First, we investigated how strong NA must be to cause an observed correlation between the independent and dependent variables. Second, we subjectively assessed whether NA can have a large enough impact on a large enough number of subjects to invalidate the observed correlations between dependent and independent variables.Methods : We simulated 10,000 populations of 300 subjects each, using the marginal distribution of workers in an actual population that had answered the Siegrist's questionnaire on effort and reward imbalance (ERI) and the General Health Questionnaire (GHQ).Results : The results of the present study suggested that simulated NA has a minimal effect on the mean scores for effort and reward. However, the correlations between the effort and reward imbalance (ERI) ratio and the GHQ score might be important, even in simulated populations with a limited NA.Conclusions : When investigating the relationship between the ERI ratio and the GHQ score, we suggest the following rules for the interpretation of the results: correlations with an explained variance of 5% and below should be considered with caution; correlations with an explained variance between 5% and 10% may result from NA, although this effect does not seem likely; and correlations with an explained variance of 10% and above are not likely to be the result of NA biases. [Authors]
Resumo:
Waveform tomographic imaging of crosshole georadar data is a powerful method to investigate the shallow subsurface because of its ability to provide images of pertinent petrophysical parameters with extremely high spatial resolution. All current crosshole georadar waveform inversion strategies are based on the assumption of frequency-independent electromagnetic constitutive parameters. However, in reality, these parameters are known to be frequency-dependent and complex and thus recorded georadar data may show significant dispersive behavior. In this paper, we evaluate synthetically the reconstruction limits of a recently published crosshole georadar waveform inversion scheme in the presence of varying degrees of dielectric dispersion. Our results indicate that, when combined with a source wavelet estimation procedure that provides a means of partially accounting for the frequency-dependent effects through an "effective" wavelet, the inversion algorithm performs remarkably well in weakly to moderately dispersive environments and has the ability to provide adequate tomographic reconstructions.
Resumo:
Background: Voltage-gated sodium channels (Nav1.x) are important players in chronic pain. A particular interest has grown in Nav1.7, expressed in nociceptors, since mutations in its gene are associated to two inherited pain syndromes or insensitivity to pain. Rufinamide, a drug used to treat refractory epilepsy such as the Lennox-Gastaut syndrome, has been shown to reduce the number of action potentials in cortical neurons without completely blocking Na channels. Aim: The goal of this study was to investigate the effect of rufinamide on Nav1.7 current. Methods and results: Whole-cell patch clamp experiments were performed using HEK293 cells stably expressing Nav1.7. Rufinamide significantly decreased peak sodium current by 28.3, 21.2 and 12.5% at concentrations of 500, 100 and 50μM respectively (precise EC50 could not be calculated since higher rufinamide concentrations could not be achieved in physiological buffer solution). No significant difference on the V1/2 of voltage-dependence of activation was seen; however a shift in the steady-state inactivation curve was observed (-82.6 mV to -88.8 mV and -81.8 to -87.6 mV for 50 and 100 μM rufinamide respectively, p <0.005). Frequency-dependent inhibition of Nav1.7 was also influenced by the drug. One hundred μM rufinamide reduced the peak sodium current (in % of the peak current taken at the first sweep of a train of 50) from 90.8 to 80.8% (5Hz), 88.7 to 71.8% (10 Hz), 69.1 to 49.2% (25 Hz) and 22.3 to 9.8% (50 Hz) (all p <0.05). Onset of fast inactivation was not influenced by the drug since no difference in the time constant of current decay was observed. Conclusion: In the concentration range of plasma level in human treated for epilepsy, 15 μM, rufinamide only minimally blocks Nav1.7. However, it stabilizes the inactivated state and exerts frequencydependent inhibition of Nav1.7. These pharmacological properties may be of use in reducing ectopic discharges as a causal and symptom related contributor of neuropathic pain syndrome.
Resumo:
Many studies based on either an experimental or an epidemiological approach, have shown that the ability to drive is impaired when the driver is under the influence of cannabis. Baseline performances of heavy users remain impaired even after several weeks of abstinence. Symptoms of cannabis abuse and dependence are generally considered incompatible with safe driving. Recently, it has been shown that traffic safety can be increased by reporting the long-term unfit drivers to the driver licensing authorities and referring the cases for further medical assessment. Evaluation of the frequency of cannabis use is a prerequisite for a reliable medical assessment of the fitness to drive. In a previous paper we advocated the use of two thresholds based on 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (THCCOOH) concentration in whole blood to help to distinguish occasional cannabis users (≤3μg/L) from heavy regular smokers (≥40μg/L). These criteria were established on the basis of results obtained in a controlled cannabis smoking study with placebo, carried out with two groups of young male volunteers; the first group was characterized by a heavy use (≥10 joints/month) while the second group was made up of occasional users smoking at most 1 joint/week. However, to date, these cutoffs have not been adequately assessed under real conditions. Their validity can now be evaluated and confirmed with 146 traffic offenders' real cases in which the whole blood cannabinoid concentrations and the frequency of cannabis use are known. The two thresholds were not challenged by the presence of ethanol (40% of cases) and of other therapeutic and illegal drugs (24%). Thus, we propose the following procedure that can be very useful in the Swiss context but also in other countries with similar traffic policies: if the whole blood THCCOOH concentration is higher than 40μg/L, traffic offenders must be directed first and foremost toward medical assessment of their fitness to drive. This evaluation is not recommended if the THCCOOH concentration is lower than 3μg/L and if the self-rated frequency of cannabis use is less than 1 time/week. A THCCOOH level between these two thresholds cannot be reliably interpreted. In such a case, further medical assessment and follow-up of the fitness to drive are also suggested, but with lower priority.