202 resultados para Selection indices
Resumo:
NKT cells utilize a restricted alphabeta TCR repertoire that recognizes glycolipids in association with CD1d. The recent development of fluorescent CD1d tetramers loaded with the synthetic glycolipid alpha-galactosyl-ceramide has led to a clearer definition of NKT-cell subsets as well as important insights into their developmental origin. As many as four subsets may exist, differing in NK1.1 expression, TCR repertoire and dependence on CD1d and various glycolipids for development. Two different lineage-commitment models have been proposed, with most evidence favoring a byproduct of conventional-T-cell development.
Resumo:
Complex sex-determination systems are a priori unstable and require specific selective forces for their maintenance. Analytical derivations have suggested that sex-antagonistic selection may play such a role, but this assumed absence of recombination between the sex-determining and sex-antagonistic genes. Using individual-based simulations, and focusing on the sex chromosome and coloration polymorphisms of platy fishes as a case study, we show that the conditions for polymorphism maintenance induce female-biases in primary sex ratios, so that sex-ratio selection makes the system collapse towards male- or female heterogamety as soon as recombinant genotypes appear. However, a polymorphism can still be maintained under scenarios comprising strong sexual selection against dull males, mild natural selection against bright females, and low recombination rates. Though such conditions are plausibly met in natural populations of fishes harbouring such polymorphisms, quantitative empirical evaluations are required to properly test whether sex-antagonistic selection is a causal agent, or if other selective processes are required (such as local mate competition favouring female biased sex ratios).
Resumo:
Natural killer T (NKT) cells are a subset of mature alpha beta TCR(+) cells that co-express NK lineage markers. Whereas most NKT cells express a canonical Valpha14/Vbeta8.2 TCR and are selected by CD1d, a minority of NKT cells express a diverse TCR repertoire and develop independently of CD1d. Little is known about the selection requirements of CD1d-independent NKT cells. We show here that NKT cells develop in RAG-deficient mice expressing an MHC class II-restricted transgenic TCR (Valpha2/Vbeta8.1) but only under conditions that lead to negative selection of conventional T cells. Moreover development of NKT cells in these mice is absolutely dependent upon an intact TCR alpha-chain connecting peptide domain, which is required for positive selection of conventional T cells via recruitment of the ERK signaling pathway. Collectively our data demonstrate that NKT cells can develop as a result of high avidity TCR/MHC class II interactions and suggest that common signaling pathways are involved in the positive selection of CD1d-independent NKT cells and conventional T cells.
Resumo:
How cells polarize in response to external cues is a fundamental biological problem. For mating, yeast cells orient growth toward the source of a pheromone gradient produced by cells of the opposite mating type. Polarized growth depends on the small GTPase Cdc42, a central eukaryotic polarity regulator that controls signaling, cytoskeleton polarization, and vesicle trafficking. However, the mechanisms of polarity establishment and mate selection in complex cellular environments are poorly understood. Here we show that, in fission yeast, low-level pheromone signaling promotes a novel polarization state, where active Cdc42, its GEF Scd1, and scaffold Scd2 form colocalizing dynamic zones that sample the periphery of the cell. Two direct Cdc42 effectors--actin cables marked by myosin V Myo52 and the exocyst complex labeled by Sec6 and Sec8--also dynamically colocalize with active Cdc42. However, these cells do not grow due to a block in the exocytosis of cell wall synthases Bgs1 and Bgs4. High-level pheromone stabilizes active Cdc42 zones and promotes cell wall synthase exocytosis and polarized growth. However, in the absence of prior low-level pheromone signaling, exploration fails, and cells polarize growth at cell poles by default. Consequently, these cells show altered partner choice, mating preferentially with sister rather than nonsister cells. Thus, Cdc42 exploration serves to orient growth for partner selection. This process may also promote genetic diversification.
Resumo:
Genetic polymorphism can be maintained over time by negative frequency-dependent (FD) selection induced by Rock-paper-scissors (RPS) social systems. RPS games produce cyclic dynamics, and have been suggested to exist in lizards, insects, isopods, plants, and bacteria. Sexual selection is predicted to accentuate the survival of the future progeny during negative FD survival selection. More specifically, females are predicted to select mates that produce progeny genotypes that exhibit highest survival during survival selection imposed by adult males. However, no empirical evidence demonstrates the existence of FD sexual selection with respect to fitness payoffs of genetic polymorphisms. Here we tested this prediction using the common lizard Zootoca vivipara, a species with three male color morphs (orange, white, yellow) that exhibit morph frequency cycles. In a first step we tested the congruence of the morph frequency change with the predicted change in three independent populations, differing in male color morph frequency and state of the FD morph cycle. Thereafter we ran standardized sexual selection assays in which we excluded alternative mechanisms that potentially induce negative FD selection, and we quantified inter-sexual behavior. The patterns of sexual selection and the observed behavior were in line with context-dependent female mate choice and male behavior played a minor role. Moreover, the strength of the sexual selection was within the magnitude of selection required to produce the observed 3-4-year and 6-8 year morph frequency cycles at low and high altitudes, respectively. In summary, the study provides the first experimental evidence that underpins the crucial assumption of the RPS games suggested to exist in lizards, insects, isopods, and plants; namely, that sexual selection produces negative-FD selection. This indicates that sexual selection, in our study exert by females, might be a crucial driver of the maintenance of genetic polymorphisms.
Resumo:
It is generally accepted that most plant populations are locally adapted. Yet, understanding how environmental forces give rise to adaptive genetic variation is a challenge in conservation genetics and crucial to the preservation of species under rapidly changing climatic conditions. Environmental variation, phylogeographic history, and population demographic processes all contribute to spatially structured genetic variation, however few current models attempt to separate these confounding effects. To illustrate the benefits of using a spatially-explicit model for identifying potentially adaptive loci, we compared outlier locus detection methods with a recently-developed landscape genetic approach. We analyzed 157 loci from samples of the alpine herb Gentiana nivalis collected across the European Alps. Principle coordinates of neighbor matrices (PCNM), eigenvectors that quantify multi-scale spatial variation present in a data set, were incorporated into a landscape genetic approach relating AFLP frequencies with 23 environmental variables. Four major findings emerged. 1) Fifteen loci were significantly correlated with at least one predictor variable (R (adj) (2) > 0.5). 2) Models including PCNM variables identified eight more potentially adaptive loci than models run without spatial variables. 3) When compared to outlier detection methods, the landscape genetic approach detected four of the same loci plus 11 additional loci. 4) Temperature, precipitation, and solar radiation were the three major environmental factors driving potentially adaptive genetic variation in G. nivalis. Techniques presented in this paper offer an efficient method for identifying potentially adaptive genetic variation and associated environmental forces of selection, providing an important step forward for the conservation of non-model species under global change.
Resumo:
OBJECTIVE: To evaluate the impact of body position on the arterial stiffness indices provided by radial applanation tonometry in pregnant and nonpregnant women. METHODS: Twenty-four young women (18-30 years) in the third trimester of a normal pregnancy and 20 healthy nonpregnant women of the same age were enrolled. In each, applanation tonometry was carried out in the sitting and supine position. The following stiffness indices were analyzed: systolic augmentation index (sAix), sAix adjusted for heart rate (sAix@75) and diastolic augmentation index (dAix), all expressed in % of central aortic pulse pressure. RESULTS: The sAix was apparently not influenced by body position, but the transition from seated to supine was associated with a substantial decrease in heart rate. When correcting for this confounder by calculating the sAix@75, systolic augmentation was substantially lower when individuals were supine (mean ± SD: nonpregnant 3.0 ± 14.4%, pregnant 8.8 ± 9.7%) than when they were sitting (nonpregnant 5.7 ± 13.0%, pregnant 11.1 ± 83%, P = 0.005 supine vs. seated in both study groups, P > 0.2 for pregnant vs. nonpregnant). The influence of body position on the dAix went in the opposite direction (supine: nonpregnant 9.7 ± 6.6%, pregnant 4.4 ± 3.5%; seated: nonpregnant 7.7 ± 5.8%, pregnant 3.3 ± 2.4%, P < 0.00001 supine vs. seated in both study groups, P = 0.001 for pregnant vs. nonpregnant). CONCLUSION: Body position has a major impact on the pattern of central aortic pressure augmentation by reflected waves in healthy young women examined either during third trimester pregnancy or in the nonpregnant state.
Improving the performance of positive selection inference by filtering unreliable alignment regions.
Resumo:
Errors in the inferred multiple sequence alignment may lead to false prediction of positive selection. Recently, methods for detecting unreliable alignment regions were developed and were shown to accurately identify incorrectly aligned regions. While removing unreliable alignment regions is expected to increase the accuracy of positive selection inference, such filtering may also significantly decrease the power of the test, as positively selected regions are fast evolving, and those same regions are often those that are difficult to align. Here, we used realistic simulations that mimic sequence evolution of HIV-1 genes to test the hypothesis that the performance of positive selection inference using codon models can be improved by removing unreliable alignment regions. Our study shows that the benefit of removing unreliable regions exceeds the loss of power due to the removal of some of the true positively selected sites.
Resumo:
The low frequency of self-peptide-specific T cells in the human preimmune repertoire has so far precluded their direct evaluation. Here, we report an unexpected high frequency of T cells specific for the self-antigen Melan-A/MART-1 in CD8 single-positive thymocytes from human histocompatibility leukocyte antigen-A2 healthy individuals, which is maintained in the peripheral blood of newborns and adults. Postthymic replicative history of Melan-A/MART-1-specific CD8 T cells was independently assessed by quantifying T cell receptor excision circles and telomere length ex vivo. We provide direct evidence that the large T cell pool specific for the self-antigen Melan-A/MART-1 is mostly generated by thymic output of a high number of precursors. This represents the only known naive self-peptide-specific T cell repertoire directly accessible in humans.
Resumo:
This study was designed to assess sex-related differences in the selection of an appropriate strategy when facing novelty. A simple visuo-spatial task was used to investigate exploratory behavior as a specific response to novelty. The exploration task was followed by a visual discrimination task, and the responses were analyzed using signal detection theory. During exploration women selected a local searching strategy in which the metric distance between what is already known and what is unknown was reduced, whereas men adopted a global strategy based on an approximately uniform distribution of choices. Women's exploratory behavior gives rise to a notion of a secure base warranting a sense of safety while men's behavior does not appear to be influenced by risk. This sex-related difference was interpreted as a difference in beliefs concerning the likelihood of uncertain events influencing risk evaluation. Keywords: exploration, spontaneous strategies, sex differences, decision-making.
Resumo:
We study the interaction between nonprice public rationing and prices in the private market. Under a limited budget, the public supplier uses a rationing policy. A private firm may supply the good to those consumers who are rationed by the public system. Consumers have different amounts of wealth, and costs of providing the good to them vary. We consider two regimes. First, the public supplier observes consumers' wealth information; second, the public supplier observes both wealth and cost information. The public supplier chooses a rationing policy, and, simultaneously, the private firm, observing only cost but not wealth information, chooses a pricing policy. In the first regime, there is a continuum of equilibria. The Pareto dominant equilibrium is a means-test equilibrium: poor consumers are supplied while rich consumers are rationed. Prices in the private market increase with the budget. In the second regime, there is a unique equilibrium. This exhibits a cost-effectiveness rationing rule; consumers are supplied if and only if their costbenefit ratios are low. Prices in the private market do not change with the budget. Equilibrium consumer utility is higher in the cost-effectiveness equilibrium than the means-test equilibrium [Authors]
Resumo:
Cefotaxime, given in two doses (each 100 mg/kg of body weight), produced a good bactericidal activity (-0.47 Deltalog(10) CFU/ml. h) which was comparable to that of levofloxacin (-0.49 Deltalog(10) CFU/ml. h) against a penicillin-resistant pneumococcal strain WB4 in experimental meningitis. Cefotaxime combined with levofloxacin acted synergistically (-1.04 Deltalog(10) CFU/ml. h). Synergy between cefotaxime and levofloxacin was also demonstrated in vitro in time killing assays and with the checkerboard method for two penicillin-resistant strains (WB4 and KR4). Using in vitro cycling experiments, the addition of cefotaxime in sub-MIC concentrations (one-eighth of the MIC) drastically reduced levofloxacin-induced resistance in the same two strains (64-fold increase of the MIC of levofloxacin after 12 cycles versus 2-fold increase of the MIC of levofloxacin combined with cefotaxime). Mutations detected in the genes encoding topoisomerase IV (parC and parE) and gyrase (gyrA and gyrB) confirmed the levofloxacin-induced resistance in both strains. Addition of cefotaxime in low doses was able to suppress levofloxacin-induced resistance.