57 resultados para Seasonal semideciduous forest
Resumo:
Forest fire sequences can be modelled as a stochastic point process where events are characterized by their spatial locations and occurrence in time. Cluster analysis permits the detection of the space/time pattern distribution of forest fires. These analyses are useful to assist fire-managers in identifying risk areas, implementing preventive measures and conducting strategies for an efficient distribution of the firefighting resources. This paper aims to identify hot spots in forest fire sequences by means of the space-time scan statistics permutation model (STSSP) and a geographical information system (GIS) for data and results visualization. The scan statistical methodology uses a scanning window, which moves across space and time, detecting local excesses of events in specific areas over a certain period of time. Finally, the statistical significance of each cluster is evaluated through Monte Carlo hypothesis testing. The case study is the forest fires registered by the Forest Service in Canton Ticino (Switzerland) from 1969 to 2008. This dataset consists of geo-referenced single events including the location of the ignition points and additional information. The data were aggregated into three sub-periods (considering important preventive legal dispositions) and two main ignition-causes (lightning and anthropogenic causes). Results revealed that forest fire events in Ticino are mainly clustered in the southern region where most of the population is settled. Our analysis uncovered local hot spots arising from extemporaneous arson activities. Results regarding the naturally-caused fires (lightning fires) disclosed two clusters detected in the northern mountainous area.
Resumo:
1. The immune system plays an important role in fitness, and interindividual variation in immunocompetence is due to several factors including food supply. 2. Seasonal variation in food resources may therefore explain why immunocompetence in bird nestlings usually declines throughout the breeding season, with chicks born early in the season receiving more food than chicks born later, and thereby possibly developing a more potent immune system. Although there are studies supporting this hypothesis, none has been experimental. 3. We performed an experiment in the kittiwake Rissa tridactyla by manipulating the food supply of pairs that were left to produce a first brood, and of pairs that were induced to produce a late replacement brood. 4. If food supply mediates, at least partially, seasonal variations in chick immunocompetence, non-food-supplemented chicks would show a stronger seasonal decline in immunocompetence than food-supplemented chicks. 5. Food supplementation improved humoral immunocompetence (the production of immunoglobulins Y), but not T-cell immunocompetence (phytohaemagglutinin, PHA response). T-cell immunocompetence of food-supplemented and non-food-supplemented chicks decreased through the season but to a similar extent, whereas the humoral immunocompetence of non-food-supplemented chicks decreased more strongly than that of food-supplemented chicks. 6. Our results suggest that the seasonal decline in humoral immunocompetence can be explained, at least partly, by variations in food supply throughout the breeding season.
Resumo:
Forest fires are defined as uncontrolled fires often occurring in wildland areas, but that can also affect houses or agricultural resources. Causes are both natural (e.g.,lightning phenomena) and anthropogenic (human negligence or arsons).Major environmental factors influencing the fire ignition and propagation are climate and vegetation. Wildfires are most common and severe during drought period and on windy days. Moreover, under water-stress conditions, which occur after a long hot and dry period, the vegetation is more vulnerable to fire. These conditions are common in the United State and Canada, where forest fires represent a big problem. We focused our analysis on the state of Florida, for which a big dataset on forest fires detection is readily available. USDA Forest Service Remote Sensing Application Center, in collaboration with NASA-Goddard Space Flight Center and the University of Maryland, has compiled daily MODIS Thermal Anomalies (fires and biomass burning images) produced by NASA using a contextual algorithm that exploits the strong emission of mid-infrared radiation from fires. Fire classes were converted in GIS format: daily MODIS fire detections are provided as the centroids of the 1 kilometer pixels and compiled into daily Arc/INFO point coverage.
Resumo:
Natural fluctuations in soil microbial communities are poorly documented because of the inherent difficulty to perform a simultaneous analysis of the relative abundances of multiple populations over a long time period. Yet, it is important to understand the magnitudes of community composition variability as a function of natural influences (e.g., temperature, plant growth, or rainfall) because this forms the reference or baseline against which external disturbances (e.g., anthropogenic emissions) can be judged. Second, definition of baseline fluctuations in complex microbial communities may help to understand at which point the systems become unbalanced and cannot return to their original composition. In this paper, we examined the seasonal fluctuations in the bacterial community of an agricultural soil used for regular plant crop production by using terminal restriction fragment length polymorphism profiling (T-RFLP) of the amplified 16S ribosomal ribonucleic acid (rRNA) gene diversity. Cluster and statistical analysis of T-RFLP data showed that soil bacterial communities fluctuated very little during the seasons (similarity indices between 0.835 and 0.997) with insignificant variations in 16S rRNA gene richness and diversity indices. Despite overall insignificant fluctuations, between 8 and 30% of all terminal restriction fragments changed their relative intensity in a significant manner among consecutive time samples. To determine the magnitude of community variations induced by external factors, soil samples were subjected to either inoculation with a pure bacterial culture, addition of the herbicide mecoprop, or addition of nutrients. All treatments resulted in statistically measurable changes of T-RFLP profiles of the communities. Addition of nutrients or bacteria plus mecoprop resulted in bacteria composition, which did not return to the original profile within 14 days. We propose that at less than 70% similarity in T-RFLP, the bacterial communities risk to drift apart to inherently different states.
Resumo:
Habitat loss and fragmentation due to land use changes are major threats to biodiversity in forest ecosystems, and they are expected to have important impacts on many taxa and at various spatial scales. Species richness and area relationships (SARs) have been used to assess species diversity patterns and drivers, and thereby in the establishment of conservation and management strategies. Here we propose a hierarchical approach to achieve deeper insights on SARs in small forest islets in intensive farmland and to address the impacts of decreasing naturalness on such relationships. In the intensive dairy landscapes of Northwest Portugal, where small forest stands (dominated by pines, eucalypts or both) represent semi-natural habitat islands, 50 small forest stands were selected and surveyed for vascular plant diversity. A hierarchical analytical framework was devised to determine species richness and inter- and intra-patch SARs for the whole set of forest patches (general patterns) and for each type of forest (specific patterns). Differences in SARs for distinct groups were also tested by considering subsets of species (native, alien, woody, and herbaceous). Overall, values for species richness were confirmed to be different between forest patches exhibiting different levels of naturalness. Whereas higher values of plant diversity were found in pine stands, higher values for alien species were observed in eucalypt stands. Total area of forest (inter-patch SAR) was found not to have a significant impact on species richness for any of the targeted groups of species. However, significant intra-patch SARs were obtained for all groups of species and forest types. A hierarchical approach was successfully applied to scrutinise SARs along a gradient of forest naturalness in intensively managed landscapes. Dominant canopy tree and management intensity were found to reflect differently on distinct species groups as well as to compensate for increasing stand area, buffering SARs among patches, but not within patches. Thus, the maintenance of small semi-natural patches dominated by pines, under extensive practices of forest management, will promote native plant diversity while at the same time contributing to limit the expansion of problematic alien invasive species.
Resumo:
Oseltamivir is the ester-type prodrug of the neuraminidase inhibitor oseltamivir carboxylate. It has been shown to be an effective treatment for both seasonal influenza and the recent pandemic 2009 A/H1N1 influenza, reducing both the duration and severity of the illness. It is also effective when used preventively. This review aims to describe the current knowledge of the pharmacokinetic and pharmacodynamic characteristics of this agent, and to address the issue of possible therapeutic drug monitoring. According to the currently available literature, the pharmacokinetics of oseltamivir carboxylate after oral administration of oseltamivir are characterized by mean ± SD bioavailability of 79 ± 12%, apparent clearance of 25.3 ± 7.0 L/h, an elimination half-life of 7.4 ± 2.5 hours and an apparent terminal volume of distribution of 267 ± 122 L. A maximum plasma concentration of 342 ± 83 μg/L, a time to reach the maximum plasma concentration of 4.2 ± 1.1 hours, a trough plasma concentration of 168 ± 32 μg/L and an area under the plasma concentration-time curve from 0 to 24 hours of 6110 ± 1330 μg · h/L for a 75 mg twice-daily regimen were derived from literature data. The apparent clearance is highly correlated with renal function, hence the dosage needs to be adjusted in proportion to the glomerular filtration rate. Interpatient variability is moderate (28% in apparent clearance and 46% in the apparent central volume of distribution); there is no indication of significant erratic or limited absorption in given patient subgroups. The in vitro pharmacodynamics of oseltamivir carboxylate reveal wide variation in the concentration producing 50% inhibition of influenza A and B strains (range 0.17-44 μg/L). A formal correlation between systemic exposure to oseltamivir carboxylate and clinical antiviral activity or tolerance in influenza patients has not yet been demonstrated; thus no formal therapeutic or toxic range can be proposed. The pharmacokinetic parameters of oseltamivir carboxylate after oseltamivir administration (bioavailability, apparent clearance and the volume of distribution) are fairly predictable in healthy subjects, with little interpatient variability outside the effect of renal function in all patients and bodyweight in children. Thus oseltamivir carboxylate exposure can probably be controlled with sufficient accuracy by thorough dosage adjustment according to patient characteristics. However, there is a lack of clinical study data on naturally infected patients. In addition, the therapeutic margin of oseltamivir carboxylate is poorly defined. The usefulness of systematic therapeutic drug monitoring in patients therefore appears to be questionable; however, studies are still needed to extend the knowledge to particular subgroups of patients or dosage regimens.
Resumo:
BACKGROUND: The influence of anti-T-cell therapy in the immunogenicity of the influenza vaccine in kidney transplant recipients remains unclear. METHODS: During the 2010 to 2011 influenza season, we evaluated the immune response to the inactivated trivalent influenza vaccine in kidney transplant recipients having received Thymoglobulin or basiliximab as induction therapy. A hemagglutination inhibition assay was used to assess the immunogenicity of the vaccine. The primary outcome was geometric mean titers of hemagglutination inhibition after influenza vaccination. RESULTS: Sixty patients (Thymoglobulin n=22 and basiliximab n=38) were included. Patients in the Thymoglobulin group were older (P=0.16), showed higher creatinine levels (P=0.16) and had more frequently received a previous transplant (P=0.02). There were no significant differences in geometric mean titers for any of the three viral strains between groups (P=0.69 for H1N1, P=0.56 for H3N2, and P=0.7 for B strain). Seroconversion to at least one viral strain was seen in 15 (68%) of 22 patients in the Thymoglobulin group and 28 (73%) of 38 in the basiliximab group (P=0.77). In patients vaccinated during the first year after receiving anti-T-cell therapy (n=25), there was a trend toward lower vaccine responses in the Thymoglobulin group. Patients who received Thymoglobulin showed lower CD4 cell counts and lower levels of IgM, at an average of 16.2 months after transplantation. A multivariate analysis showed that only the absence of mycophenolate was associated with a better vaccine response (odds ratio=9.47; 95% confidence interval, 1.03-86.9; P=0.047). CONCLUSION: No significant differences were seen in immunogenicity of the influenza vaccine in kidney transplant recipients having received either Thymoglobulin or basiliximab.
Resumo:
Objective. To measure support for seasonal influenza vaccination requirements among US healthcare personnel (HCP) and its associations with attitudes regarding influenza and influenza vaccination and self-reported coverage by existing vaccination requirements. Design. Between June 1 and June 30, 2010, we surveyed a sample of US HCP ([Formula: see text]) recruited using an existing probability-based online research panel of participants representing the US general population as a sampling frame. Setting. General community. Participants. Eligible HCP who (1) reported having worked as medical doctors, health technologists, healthcare support staff, or other health practitioners or who (2) reported having worked in hospitals, ambulatory care facilities, long-term care facilities, or other health-related settings. Methods. We analyzed support for seasonal influenza vaccination requirements for HCP using proportion estimation and multivariable probit models. Results. A total of 57.4% (95% confidence interval, 53.3%-61.5%) of US HCP agreed that HCP should be required to be vaccinated for seasonal influenza. Support for mandatory vaccination was statistically significantly higher among HCP who were subject to employer-based influenza vaccination requirements, who considered influenza to be a serious disease, and who agreed that influenza vaccine was safe and effective. Conclusions. A majority of HCP support influenza vaccination requirements. Moreover, providing HCP with information about the safety of influenza vaccination and communicating that immunization of HCP is a patient safety issue may be important for generating staff support for influenza vaccination requirements.
Resumo:
Climate has long been suggested to affect population genetic structures of eusocial insect societies. For instance, Hamilton [Journal of Theoretical Biology7 (1964) 17] discusses whether temperate and tropical eusocial insects may show differences in population-level genetic structure and viscosity, and how this might relate to differences in the degree of synchrony in their life cycles or modes of nest founding. Despite the importance of Hamilton's 1964 papers, this specific idea has not been tested in actual populations of wasps, probably due to the paucity of studies on tropical species. Here, we compare colony and population genetic structures in two species of primitively eusocial paper wasps with contrasting ecologies: the tropical species Polistes canadensis and the temperate species P. dominulus. Our results provide important clarifications of Hamilton's discussion. Specifically, we show that the genetic structures of the temperate and tropical species were very similar, indicating that seasonality does not greatly affect population viscosity or inbreeding. For both species, the high genetic differentiation between nests suggests strong selection at the nest level to live with relatives, whereas low population viscosity and low genetic differentiation between nest aggregations might reflect balancing selection to disperse, avoiding competition with relatives. Overall, our study suggests no prevalence of seasonal constraints of the life cycle in affecting the population genetic structure of eusocial paper wasps. These conclusions are likely to apply also to other primitively eusocial insects, such as halictine bees. They also highlight how selection for a kin structure that promotes altruism can override potential effects of ecology in eusocial insects.
Resumo:
1. As trees in a given cohort progress through ontogeny, many individuals die. This risk of mortality is unevenly distributed across species because of many processes such as habitat filtering, interspecific competition and negative density dependence. Here, we predict and test the patterns that such ecological processes should inscribe on both species and phylogenetic diversity as plants recruit from saplings to the canopy. 2. We compared species and phylogenetic diversity of sapling and tree communities at two sites in French Guiana. We surveyed 2084 adult trees in four 1-ha tree plots and 943 saplings in sixteen 16-m2 subplots nested within the tree plots. Species diversity was measured using Fisher's alpha (species richness) and Simpson's index (species evenness). Phylogenetic diversity was measured using Faith's phylogenetic diversity (phylogenetic richness) and Rao's quadratic entropy index (phylogenetic evenness). The phylogenetic diversity indices were inferred using four phylogenetic hypotheses: two based on rbcLa plastid DNA sequences obtained from the inventoried individuals with different branch lengths, a global phylogeny available from the Angiosperm Phylogeny Group, and a combination of both. 3. Taxonomic identification of the saplings was performed by combining morphological and DNA barcoding techniques using three plant DNA barcodes (psbA-trnH, rpoC1 and rbcLa). DNA barcoding enabled us to increase species assignment and to assign unidentified saplings to molecular operational taxonomic units. 4. Species richness was similar between saplings and trees, but in about half of our comparisons, species evenness was higher in trees than in saplings. This suggests that negative density dependence plays an important role during the sapling-to-tree transition. 5. Phylogenetic richness increased between saplings and trees in about half of the comparisons. Phylogenetic evenness increased significantly between saplings and trees in a few cases (4 out of 16) and only with the most resolved phylogeny. These results suggest that negative density dependence operates largely independently of the phylogenetic structure of communities. 6. Synthesis. By contrasting species richness and evenness across size classes, we suggest that negative density dependence drives shifts in composition during the sapling-to-tree transition. In addition, we found little evidence for a change in phylogenetic diversity across age classes, suggesting that the observed patterns are not phylogenetically constrained.
Resumo:
BACKGROUND: Cardiovascular diseases (CVD) mortality has been shown to follow a seasonal pattern. Several studies suggested several possible determinants of this pattern, including misclassification of causes of deaths. We aimed at assessing seasonality in overall, CVD, cancer and non-CVD/non-cancer mortality using data from 19 countries from different latitudes. METHODS AND FINDINGS: Monthly mortality data were compiled from 19 countries, amounting to over 54 million deaths. We calculated ratios of the observed to the expected numbers of deaths in the absence of a seasonal pattern. Seasonal variation (peak to nadir difference) for overall and cause-specific (CVD, cancer or non-CVD/non-cancer) mortality was analyzed using the cosinor function model. Mortality from overall, CVD and non-CVD/non-cancer showed a consistent seasonal pattern. In both hemispheres, the number of deaths was higher than expected in winter. In countries close to the Equator the seasonal pattern was considerably lower for mortality from any cause. For CVD mortality, the peak to nadir differences ranged from 0.185 to 0.466 in the Northern Hemisphere, from 0.087 to 0.108 near the Equator, and from 0.219 to 0.409 in the Southern Hemisphere. For cancer mortality, the seasonal variation was nonexistent in most countries. CONCLUSIONS: In countries with seasonal variation, mortality from overall, CVD and non-CVD/non-cancer show a seasonal pattern with mortality being higher in winter than in summer. Conversely, cancer mortality shows no substantial seasonality.
Resumo:
PURPOSE: To compare in-season eotaxin-1 levels in tears of patients suffering from seasonal allergic conjunctivitis (SAC) with (1) tears of normal subjects and (2) tears of SAC patients out of season. METHODS: Tears of 11 SAC patients and six control volunteers were collected during the pollen season. Tears of five SAC patients showing a strong sensitivity to grass pollen (skin-prick tests and specific serum IgE) were collected both in season and out of season. ELISA measured eotaxin-1 level. RESULTS: Eotaxin-1 concentration in tears of SAC patients [2,100+/-503 (SEM) pg/ml] and normal subjects (1,193+/-176 pg/ml) were significantly different (P=0.0049). Regarding allergic patients, the clinical score (sum of five allergic criteria) was significantly different in season and out of season (P=0.0043) as was also the case with eotaxin-1 concentration (P=0.024). CONCLUSIONS: The eotaxin-1 concentration in tears of patients showing hay fever could confirm a diagnosis of seasonal ocular allergy.
Resumo:
Aim This study used data from temperate forest communities to assess: (1) five different stepwise selection methods with generalized additive models, (2) the effect of weighting absences to ensure a prevalence of 0.5, (3) the effect of limiting absences beyond the environmental envelope defined by presences, (4) four different methods for incorporating spatial autocorrelation, and (5) the effect of integrating an interaction factor defined by a regression tree on the residuals of an initial environmental model. Location State of Vaud, western Switzerland. Methods Generalized additive models (GAMs) were fitted using the grasp package (generalized regression analysis and spatial predictions, http://www.cscf.ch/grasp). Results Model selection based on cross-validation appeared to be the best compromise between model stability and performance (parsimony) among the five methods tested. Weighting absences returned models that perform better than models fitted with the original sample prevalence. This appeared to be mainly due to the impact of very low prevalence values on evaluation statistics. Removing zeroes beyond the range of presences on main environmental gradients changed the set of selected predictors, and potentially their response curve shape. Moreover, removing zeroes slightly improved model performance and stability when compared with the baseline model on the same data set. Incorporating a spatial trend predictor improved model performance and stability significantly. Even better models were obtained when including local spatial autocorrelation. A novel approach to include interactions proved to be an efficient way to account for interactions between all predictors at once. Main conclusions Models and spatial predictions of 18 forest communities were significantly improved by using either: (1) cross-validation as a model selection method, (2) weighted absences, (3) limited absences, (4) predictors accounting for spatial autocorrelation, or (5) a factor variable accounting for interactions between all predictors. The final choice of model strategy should depend on the nature of the available data and the specific study aims. Statistical evaluation is useful in searching for the best modelling practice. However, one should not neglect to consider the shapes and interpretability of response curves, as well as the resulting spatial predictions in the final assessment.
Resumo:
The traditionally coercive and state-controlled governance of protected areas for nature conservation in developing countries has in many cases undergone change in the context of widespread decentralization and liberalization. This article examines an emerging "mixed" (coercive, community- and market-oriented) conservation approach in managed-resource protected areas and its effects on state power through a case study on forest protection in the central Indian state of Madhya Pradesh. The findings suggest that imperfect decentralization and partial liberalization resulted in changed forms, rather than uniform loss, of state power. A forest co-management program paradoxically strengthened local capacity and influence of the Forest Department, which generally maintained its territorial and knowledge-based control over forests and timber management. Furthermore, deregulation and reregulation enabled the state to withdraw from uneconomic activities but also implied reduced place-based control of non-timber forest products. Generally, the new policies and programs contributed to the separation of livelihoods and forests in Madhya Pradesh. The article concludes that regulatory, community- and market-based initiatives would need to be better coordinated to lead to more effective nature conservation and positive livelihood outcomes.