213 resultados para Sacral lymph node
Resumo:
Objective: Sentinel lymph node biopsy (SLNB) is a validated staging technique for breast carcinoma. Some women are exposed to have a second SLNB due to breast cancer recurrence or a second neoplasia (breast or other). Due to modi- fied anatomy, it has been claimed that previous axillary surgery represents a contra-indication to SLNB. Our objective was to analyse the literature to assess if a second SLNB is to be recommended or not. Methods: For the present study, we performed a review of all published data during the last 10 years on patients with previous axilla surgery and second SLNB. Results: Our analysis shows that second SLNB is feasible in 70%. Extra-axillary SNs rate (31%) was higher after radical lymph node dissection (ALND) (60% - 84%) than after SLNB alone (14% - 65%). Follow-up and com- plementary ALND following negative and positive second SLNB shows that it is a reliable procedure. Conclusion: The review of literature confirms that SLNB is feasible after previous axillary dissection. Triple technique for SN mapping is the best examination to highlight modified lymphatic anatomy and shows definitively where SLNB must be per- formed. Surgery may be more demanding as patients may have more frequently extra-axillary SN only, like internal mammary nodes. ALND can be avoided when second SLNB harvests negative SNs. These conclusions should however be taken with caution because of the heterogeneity of publications regarding SLNB and surgical technique.
Resumo:
The management of lymph nodes in nonmelanoma skin cancer patients is currently still debated. Merkel cell carcinoma (MCC), squamous cell carcinoma (SCC), pigmented epithelioid melanocytoma (PEM), and other rare skin neoplasms have a well-known risk to spread to regional lymph nodes. The use of sentinel lymph node biopsy (SLNB) could be a promising procedure to assess this risk in clinically N0 patients. Metastatic SNs have been observed in 4.5-28% SCC (according to risk factors), in 9-42% MCC, and in 14-57% PEM. We observed overall 30.8% positive SNs in 13 consecutive patients operated for high-risk nonmelanoma skin cancer between 2002 and 2011 in our institution. These high rates support recommendation to implement SLNB for nonmelanoma skin cancer especially for SCC patients. Completion lymph node dissection following positive SNs is also a matter of discussion especially in PEM. It must be remembered that a definitive survival benefit of SLNB in melanoma patients has not been proven yet. However, because of its low morbidity when compared to empiric elective lymph node dissection or radiation therapy of lymphatic basins, SLNB has allowed sparing a lot of morbidity and could therefore be used in nonmelanoma skin cancer patients, even though a significant impact on survival has not been demonstrated.
Resumo:
The stromal scaffold of the lymph node (LN) paracortex is built by fibroblastic reticular cells (FRCs). Conditional ablation of lymphotoxin-β receptor (LTβR) expression in LN FRCs and their mesenchymal progenitors in developing LNs revealed that LTβR-signaling in these cells was not essential for the formation of LNs. Although T cell zone reticular cells had lost podoplanin expression, they still formed a functional conduit system and showed enhanced expression of myofibroblastic markers. However, essential immune functions of FRCs, including homeostatic chemokine and interleukin-7 expression, were impaired. These changes in T cell zone reticular cell function were associated with increased susceptibility to viral infection. Thus, myofibroblasic FRC precursors are able to generate the basic T cell zone infrastructure, whereas LTβR-dependent maturation of FRCs guarantees full immunocompetence and hence optimal LN function during infection.
Inflammatory myofibroblastic tumor of the trachea with concomitant granulomatous lymph node lesions.
Resumo:
We report herein the case of a 57-year-old lady who had two concomittant lesions, an inflammatory myofibroblastic tumor in the trachea, and severe granulomatous lesions in the adjacent hilar lymph nodes. While these two lesions shared histological and some immunohistochemical features lesions. They differed in terms of ALK-1 expression, which was positive in the tracheal tumor and negative in the lymph nodes. The discussion of the case circles around putative pathophysiological links between the lesions. The authors favor the idea that the lymph nodes present a sarcoid-like granulomatous reaction to the inflammatory myofibroblastic tumor in the trachea over a coexistence of two independent entities. However, no conclusive evidence for this interpretation can be presented based on the existing literature.
Resumo:
OBJECTIVE: Prospective analysis of the morbidity and outcome of the sentinel lymph node (SLN) technique in a consecutive series of patients with early-stage melanoma. METHODS: Between 1997 and 1998, 60 patients with stage IB-II malignant melanoma underwent SLN dissection. Preoperative dynamic lymphoscintigraphy with mapping of the lymph vessels and lymph nodes and location of the sentinel node was performed the day before SLN dissection. SLN was identified by use of the blue dye technique. SLN was assessed for histopathological and immunohistochemical examination. Postoperative morbidity and mortality were recorded. Follow-up consisted of repetitive clinical examination with lymph nodes status, laboratory and radiologic findings. RESULTS: Tumor-positive SLN was observed in 18% of the patients and stage II disease was found in 91% of the patients with positive SLN. Breslow thickness was the only significant factor predicting involvement of a SLN (p = 0.02). In 36% of the positive SLN, metastases could be assessed only by immunohistochemical examination. Postoperative complications after SLN dissection were observed in 5% in comparison with 36% after elective lymph node dissection. After a mean follow-up of 32 months, recurrence was observed in 3% with a mean disease-free survival of 8 months. Overall survival was 82% and 90% in patients with positive and negative SLN, respectively. Overall mortality was 15%, due to distant metastases in 78% of the cases. CONCLUSIONS: Staging of early-stage melanoma with the SLN dissection by use of the blue dye technique combined to lymphoscintigraphy and immunohistochemistry is reliable and safe, with less morbidity than elective lymphadenectomy. Long-term follow-up is mandatory to establish the exact reliability of SLN dissection.
Resumo:
In this paper, we present the segmentation of the headand neck lymph node regions using a new active contourbased atlas registration model. We propose to segment thelymph node regions without directly including them in theatlas registration process; instead, they are segmentedusing the dense deformation field computed from theregistration of the atlas structures with distinctboundaries. This approach results in robust and accuratesegmentation of the lymph node regions even in thepresence of significant anatomical variations between theatlas-image and the patient's image to be segmented. Wealso present a quantitative evaluation of lymph noderegions segmentation using various statistical as well asgeometrical metrics: sensitivity, specificity, dicesimilarity coefficient and Hausdorff distance. Acomparison of the proposed method with two other state ofthe art methods is presented. The robustness of theproposed method to the atlas selection, in segmenting thelymph node regions, is also evaluated.
Resumo:
To investigate a recently developed lymphadenopathy can be simple or complex. The medical history, presence or not of symptoms, the general physical examination, and the localization and characteristics of the adenopathy, most often lead to a diagnosis and therapy when indicated. Among young adults, the etiology is either infectious or reactive, rarely tumoral, as opposed to elderly persons. The most important step is to look at signs of severity (or non banality) such as an increased size, hard consistency, supra-clavicular location, an immunocompromised host, a history of Tb exposition. If present, these signs will trigger a biopsy with cyto- or histopathological examination mostly to rule out a malignant tumor. This article reviews the practical steps of an investigation of an isolated adenopathy in an adult patient.
Resumo:
SummarySecondary lymphoid organs, such as lymph nodes or spleen, are the only places in our body where primary adaptive immune responses are efficiently elicited. These organs have distinct Β and Τ cell rich zones and Τ lymphocytes constantly migrate from the bloodstream into Τ zones to scan dendritic cells (DCs) for antigens they present. Specialized fibroblasts, the Τ zone reticular cells (HR.Cs), span the Τ zone in the form a three-dimensional network. lK.Cs guide incoming Τ cells in their migration, both chemically, by the secretion of the chemokines CCL19 and CCL21, and physically, by construction of a road system to which also DCs adhere. In this way TRCs are thought to facilitate encounters of Τ cells with antigen-bearing DCs and thereby accelerate the selection of rare antigen-specific Τ cells. The resulting Τ cell activation, proliferation and differentiation all take place within the TRC network. However, the influence of TRCs on Τ cell activation has so fer not been elucidated with the possible reasons being that TRCs represent a relative rare cell population and that mice devoid of TRCs have not been described.To circumvent these technical limitations, we established TRC clones and lines to have an abundant source to functionally characterize TRCs. Both the clones and lines show a fibroblastic phenotype, express a surface marker profile comparable to ex vivo TRCs and produce extracellular matrix molecules. However, expression of Ccl19, Ccl21 and ZL-7 is lost and could not be restored by cytokine stimulation. When these TRC clones or lines were cultured in a three-dimensional cell culture system, their morphology changed and resembled that of in vivo TRCs as they formed networks. By adding Τ cells and antigen-loaded DCs to these cultures we successfully reconstructed lymphoid Τ zones that allowed antigen-specific Τ cell activation.To characterize the role of TRCs in Τ cell priming, TRCs were co-cultured with antigen-specific Τ cells in the presence antigen-loaded DCs. Surprisingly, the presence of TRC lines and ex vivo TRCs inhibited rather than enhanced CD8+ Τ cell activation, proliferation and effector cell differentiation. TRCs shared this feature with fibroblasts from non-lymphoid tissues as well as mesenchymal stromal cells. TRCs were identified as a strong source of nitric oxide (NO) thereby directly dampening Τ cell expansion as well as reducing the Τ cell priming capacity of DCs. The expression of inducible NO synthase (iNOS) was up- regulated in a subset of TRCs by both DC-signals as well as interferon-γ produced by primed CD8+ Τ cells. Importantly, iNOS expression was induced during viral infection in vivo in both lymph node TRCs and DCs. Consistent with a role for NO as a negative regulator, the primary Τ cell response was exaggerated in iNOS-/- mice. Our findings highlight that in addition to their established positive roles in Τ cell responses TRCs and DCs cooperate in a negative feedback loop to attenuate Τ cell expansion during acute inflammation.RésuméLes organes lymphoïdes secondaires, comme les ganglions lymphoïdes ou la rate, sont les seuls sites dans notre corps où la réponse primaire des lymphocytes Β et Τ est initiée efficacement. Ces organes ont des zones différentes, riches en cellules Β ou T. Des lymphocytes Τ circulent constamment du sang vers les zones T, où ils échantillonent la surface des cellules dendritiques (DCs) pour identifier les antigènes qu'ils présentent. Des fibroblastes spécialisés - nommés Τ zone reticular cells (TRCs)' forment un réseau tridimensionnel dans la zone T. Les TRCs guident la migration des cellules Τ par deux moyens: chimiquement, par la sécrétion des chimiokines CCL19 et CCL21 et physiquement, par la construction d'un réseau routier en trois dimensions, auquel adhèrent aussi des DCs. Dans ce? cas, on pense que la présence des TRCs facilite les rencontres entre les cellules Τ et les DCs chargées de l'antigène et accélère la sélection des rares cellules Τ spécifiques. Ensuite, l'activation de cellules T, ainsi que la prolifération et la différenciation se produisent toutes à l'intérieur du réseau des TRCs. L'influence des TRCs sur l'activation des cellules T n'est que très peu caractérisée, en partie parce que les TRCs représentent une population rare et que les souris déficientes dans les TRCs n'ont pas encore été découvertes.Pour contourner ces limitations techniques, nous avons établi des clones et des lignées cellulaires de TRC pour obtenir une source indéfinie de ces cellules permettant leur caractérisation fonctionnelle. Les clones et lignées établis ont un phénotype de fibroblaste, ils expriment des molécules de surface similaires aux TRCs ex vivo et produisent de la matrice extracellulaire. Mais l'expression de Ccl19, Ccl21 et 11-7 est perdue et ne peut pas être rétablie par stimulation avec différentes cytokines. Les clones TRC ou les lignées cultivées en un système tridimensionnel de culture cellulaire, montrent une morphologie changée, qui ressemble à celle de TRC ex vivo inclus la construction de réseaux tridimensionnels.Pour caractériser le rôle des TRC dans l'activation des cellules T, nous avons cultivé des TRCs avec des cellules T spécifiques et des DCs chargées avec l'antigène. Etonnamment, la présence des TRC (lignées et ex vivo) inhibait plutôt qu'elle améliorait l'activation, la prolifération et la différenciation des lymphocytes T CDS+. Les TRCs partageaient cette fonction avec des fibr-oblastes des organes non lymphoïdes et des cellules souches du type mésenchymateux. Dans ces conditions, les TRCs sont une source importante d'oxyde nitrique (NO) et par ce fait limitent directement l'expansion des cellules T et réduisent aussi la capacité des DCs à activer les cellules T. L'expression de l'enzyme NO synthase inductible (ïNOS) est régulée à la hausse par des signaux dérivés des DCs et par l'interféron-γ produit par des cellules T de type CD8+ activées. Plus important, l'expression d'iNOS est induite pendant une infection virale in vivo, dans les TRCs et dans les DCs. Par conséquent, la réponse primaire de cellules T est exagérée dans des souris iNOS-/-. Nos résultats mettent en évidence qu'en plus de leur rôle positif bien établi dans la réponse immunitaire, les TRCs et les DCs coopèrent dans une boucle de rétroaction négative pour atténuer l'expansion des cellules T pendant l'inflammation aigiie pour protéger l'intégrité et la fonctionnalité des organes lymphoïdes secondaires.
Resumo:
In sentinel node (SN) biopsy, an interval SN is defined as a lymph node or group of lymph nodes located between the primary melanoma and an anatomically well-defined lymph node group directly draining the skin. As shown in previous reports, these interval SNs seem to be at the same metastatic risk as are SNs in the usual, classic areas. This study aimed to review the incidence, lymphatic anatomy, and metastatic risk of interval SNs. METHODS: SN biopsy was performed at a tertiary center by a single surgical team on a cohort of 402 consecutive patients with primary melanoma. The triple technique of localization was used-that is, lymphoscintigraphy, blue dye, and gamma-probe. Otolaryngologic melanoma and mucosal melanoma were excluded from this analysis. SNs were examined by serial sectioning and immunohistochemistry. All patients with metastatic SNs were recommended to undergo a radical selective lymph node dissection. RESULTS: The primary locations of the melanomas included the trunk (188), an upper limb (67), or a lower limb (147). Overall, 97 (24.1%) of the 402 SNs were metastatic. Interval SNs were observed in 18 patients, in all but 2 of whom classic SNs were also found. The location of the primary was truncal in 11 (61%) of the 18, upper limb in 5, and lower limb in 2. One patient with a dorsal melanoma had drainage exclusively in a cervicoscapular area that was shown on removal to contain not lymph node tissue but only a blue lymph channel without tumor cells. Apart from the interval SN, 13 patients had 1 classic SN area and 3 patients 2 classic SN areas. Of the 18 patients, 2 had at least 1 metastatic interval SN and 2 had a classic SN that was metastatic; overall, 4 (22.2%) of 18 patients were node-positive. CONCLUSION: We found that 2 of 18 interval SNs were metastatic: This study showed that preoperative lymphoscintigraphy must review all known lymphatic areas in order to exclude an interval SN.
Resumo:
BACKGROUND: Invasion and metastasis are two important hallmarks of malignant tumors caused by complex genetic and epigenetic alterations. The present study investigated the contribution of aberrant methylation profiles of cancer related genes, APC, BIN1, BMP6, BRCA1, CST6, ESR-b, GSTP1, P14 (ARF), P16 (CDKN2A), P21 (CDKN1A), PTEN, and TIMP3, in the matched axillary lymph node metastasis in comparison to the primary tumor tissue and the adjacent normal tissue from the same breast cancer patients to identify the potential of candidate genes methylation as metastatic markers. METHODS: The quantitative methylation analysis was performed using the SEQUENOM's EpiTYPER? assay which relies on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). RESULTS: The quantitative DNA methylation analysis of the candidate genes showed higher methylation proportion in the primary tumor tissue than that of the matched normal tissue and the differences were significant for the APC, BIN1, BMP6, BRCA1, CST6, ESR-b, P16, PTEN and TIMP3 promoter regions (P<0.05). Among those candidate methylated genes, APC, BMP6, BRCA1 and P16 displayed higher methylation proportion in the matched lymph node metastasis than that found in the normal tissue (P<0.05). The pathway analysis revealed that BMP6, BRCA1 and P16 have a role in prevention of neoplasm metastasis. CONCLUSIONS: The results of the present study showed methylation heterogeneity between primary tumors and metastatic lesion. The contribution of aberrant methylation alterations of BMP6, BRCA1 and P16 genes in lymph node metastasis might provide a further clue to establish useful biomarkers for screening metastasis.
Resumo:
OBJECTIVE: To compare outcomes of patients with lymph node (LN)-positive urothelial carcinoma of the bladder (UCB) treated with or without cisplatin-based combined adjuvant chemotherapy (AC) after radical cystectomy (RC). PATIENTS AND METHODS: We retrospectively analysed 1523 patients with LN-positive UCB, who underwent RC with bilateral pelvic LN dissection. All patients had no evidence of disease after RC. AC was administered within 3 months. Competing-risks models were applied to compare UCB-related mortality. RESULTS: Of the 1523 patients, 874 (57.4%) received AC. The cumulative 1-, 2- and 5-year UCB-related mortality rates for all patients were 16%, 36% and 56%, respectively. Administration of AC was associated with an 18% relative reduction in the risk of UCB-related death (subhazard ratio 0.82, P = 0.005). The absolute reduction in mortality was 3.5% at 5 years. The positive effect of AC was detectable in patients aged ≤70 years, in women, in pT3-4 disease, and in those with a higher LN density and lymphovascular invasion. This study is limited by its retrospective and non-randomised design, selection bias, the absence of central pathological review and lack in standardisation of LN dissection and cisplatin-based protocols. CONCLUSION: AC seems to reduce UCB-related mortality in patients with LN-positive UCB after RC. Younger patients, women and those with high-risk features such as pT3-4 disease, a higher LN density and lymphovascular invasion appear to benefit most. Appropriately powered prospective randomised trials are necessary to confirm these findings.
Resumo:
OBJECTIVE: To evaluate the effect of adjuvant chemotherapy (AC) on mortality after radical nephroureterectomy (RNU) for upper tract urothelial carcinoma (UTUC) with positive lymph nodes (LNs) and to identify patient subgroups that are most likely to benefit from AC. PATIENTS AND METHODS: We retrospectively analysed data of 263 patients with LN-positive UTUC, who underwent full surgical resection. In all, 107 patients (41%) received three to six cycles of AC, while 156 (59.3%) were treated with RNU alone. UTUC-related mortality was evaluated using competing-risks regression models. RESULTS: In all patients (Tall N+), administration of AC had no significant impact on UTUC-related mortality on univariable (P = 0.49) and multivariable (P = 0.11) analysis. Further stratified analyses showed that only N+ patients with pT3-4 disease benefited from AC. In this subgroup, AC reduced UTUC-related mortality by 34% (P = 0.019). The absolute difference in mortality was 10% after the first year and increased to 23% after 5 years. On multivariable analysis, administration of AC was associated with significantly reduced UTUC-related mortality (subhazard ratio 0.67, P = 0.022). Limitations of this study are the retrospective non-randomised design, selection bias, absence of a central pathological review and different AC protocols. CONCLUSIONS: AC seems to reduce mortality in patients with pT3-4 LN-positive UTUC after RNU. This subgroup of LN-positive patients could serve as target population for an AC prospective randomised trial.
Resumo:
Ilioinguinal dissection is associated with a high rate of lymphatic complications. Prolonged lymph flow causes greatest concern and preventive strategies are needed. A retrospective study of 28 consecutive patients undergoing groin dissection for melanoma metastases was performed to evaluate the influence of sartorius muscle transposition on lymph flow. Modification of the surgical technique with transposition of the sartorius muscle was not associated with reduced drainage time (P = 0.66). A 2-staged approach, with initial sentinel lymph node resection and lymph node dissection in a second operation, however, lead to shortened duration of the lymph flow (P = 0.01). Prolonged lymphorrhea was more frequent in older (P = 0.03), obese (P = 0.02) patients affected by diabetes mellitus (P = 0.03) and hypertension (P = 0.04).
Resumo:
Adaptive immunity is initiated in T-cell zones of secondary lymphoid organs. These zones are organized in a rigid 3D network of fibroblastic reticular cells (FRCs) that are a rich cytokine source. In response to lymph-borne antigens, draining lymph nodes (LNs) expand several folds in size, but the fate and role of the FRC network during immune response is not fully understood. Here we show that T-cell responses are accompanied by the rapid activation and growth of FRCs, leading to an expanded but similarly organized network of T-zone FRCs that maintains its vital function for lymphocyte trafficking and survival. In addition, new FRC-rich environments were observed in the expanded medullary cords. FRCs are activated within hours after the onset of inflammation in the periphery. Surprisingly, FRC expansion depends mainly on trapping of naïve lymphocytes that is induced by both migratory and resident dendritic cells. Inflammatory signals are not required as homeostatic T-cell proliferation was sufficient to trigger FRC expansion. Activated lymphocytes are also dispensable for this process, but can enhance the later growth phase. Thus, this study documents the surprising plasticity as well as the complex regulation of FRC networks allowing the rapid LN hyperplasia that is critical for mounting efficient adaptive immunity.