132 resultados para SIGNAL-REGULATING KINASE-1
Resumo:
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is known as a "death ligand"-a member of the TNF superfamily that binds to receptors bearing death domains. As well as causing apoptosis of certain types of tumor cells, TRAIL can activate both NF-kappaB and JNK signalling pathways. To determine the role of TGF-beta-Activated Kinase-1 (TAK1) in TRAIL signalling, we analyzed the effects of adding TRAIL to mouse embryonic fibroblasts (MEFs) derived from TAK1 conditional knockout mice. TAK1-/- MEFs were significantly more sensitive to killing by TRAIL than wild-type MEFs, and failed to activate NF-kappaB or JNK. Overexpression of IKK2-EE, a constitutive activator of NF-kappaB, protected TAK1-/- MEFs against TRAIL killing, suggesting that TAK1 activation of NF-kappaB is critical for the viability of cells treated with TRAIL. Consistent with this model, TRAIL failed to induce the survival genes cIAP2 and cFlipL in the absence of TAK1, whereas activation of NF-kappaB by IKK2-EE restored the levels of both proteins. Moreover, ectopic expression of cFlipL, but not cIAP2, in TAK1-/- MEFs strongly inhibited TRAIL-induced cell death. These results indicate that cells that survive TRAIL treatment may do so by activation of a TAK1-NF-kappaB pathway that drives expression of cFlipL, and suggest that TAK1 may be a good target for overcoming TRAIL resistance.
Resumo:
Type 2 diabetes is a polygenic and genetically heterogeneous disease . The age of onset of the disease is usually late and environmental factors may be required to induce the complete diabetic phenotype. Susceptibility genes for diabetes have not yet been identified. Islet-brain-1 (IB1, encoded by MAPK8IP1), a novel DNA-binding transactivator of the glucose transporter GLUT2 (encoded by SLC2A2), is the homologue of the c-Jun amino-terminal kinase-interacting protein-1 (JIP-1; refs 2-5). We evaluated the role of IBi in beta-cells by expression of a MAPK8IP1 antisense RNA in a stable insulinoma beta-cell line. A 38% decrease in IB1 protein content resulted in a 49% and a 41% reduction in SLC2A2 and INS (encoding insulin) mRNA expression, respectively. In addition, we detected MAPK8IP1 transcripts and IBi protein in human pancreatic islets. These data establish MAPK8IP1 as a candidate gene for human diabetes. Sibpair analyses performed on i49 multiplex French families with type 2 diabetes excluded MAPK8IP1 as a major diabetogenic locus. We did, however, identify in one family a missense mutation located in the coding region of MAPK8IP1 (559N) that segregated with diabetes. In vitro, this mutation was associated with an inability of IB1 to prevent apoptosis induced by MAPK/ERK kinase kinase 1 (MEKK1) and a reduced ability to counteract the inhibitory action of the activated c-JUN amino-terminal kinase (JNK) pathway on INS transcriptional activity. Identification of this novel non-maturity onset diabetes of the young (MODY) form of diabetes demonstrates that IB1 is a key regulator of 3-cell function.
Resumo:
AIM/HYPOTHESIS: IL-6 induces insulin resistance by activating signal transducer and activator of transcription 3 (STAT3) and upregulating the transcription of its target gene SOCS3. Here we examined whether the peroxisome proliferator-activated receptor (PPAR)β/δ agonist GW501516 prevented activation of the IL-6-STAT3-suppressor of cytokine signalling 3 (SOCS3) pathway and insulin resistance in human hepatic HepG2 cells. METHODS: Studies were conducted with human HepG2 cells and livers from mice null for Pparβ/δ (also known as Ppard) and wild-type mice. RESULTS: GW501516 prevented IL-6-dependent reduction in insulin-stimulated v-akt murine thymoma viral oncogene homologue 1 (AKT) phosphorylation and in IRS-1 and IRS-2 protein levels. In addition, treatment with this drug abolished IL-6-induced STAT3 phosphorylation of Tyr⁷⁰⁵ and Ser⁷²⁷ and prevented the increase in SOCS3 caused by this cytokine. Moreover, GW501516 prevented IL-6-dependent induction of extracellular-related kinase 1/2 (ERK1/2), a serine-threonine protein kinase involved in serine STAT3 phosphorylation; the livers of Pparβ/δ-null mice showed increased Tyr⁷⁰⁵- and Ser⁷²⁷-STAT3 as well as phospho-ERK1/2 levels. Furthermore, drug treatment prevented the IL-6-dependent reduction in phosphorylated AMP-activated protein kinase (AMPK), a kinase reported to inhibit STAT3 phosphorylation on Tyr⁷⁰⁵. In agreement with the recovery in phospho-AMPK levels observed following GW501516 treatment, this drug increased the AMP/ATP ratio and decreased the ATP/ADP ratio. CONCLUSIONS/INTERPRETATION: Overall, our findings show that the PPARβ/δ activator GW501516 prevents IL-6-induced STAT3 activation by inhibiting ERK1/2 phosphorylation and preventing the reduction in phospho-AMPK levels. These effects of GW501516 may contribute to the prevention of cytokine-induced insulin resistance in hepatic cells.
Resumo:
PURPOSE OF REVIEW: Lipoproteins play a critical role in the development of atherosclerosis, which might result partly from their capacity to induce specific intracellular signaling pathways. The goal of this review is to summarize the signaling properties of lipoproteins, in particular, their capacity to induce activation of mitogen-activated protein kinase pathways and the resulting modulation of cellular responses in blood vessel cells. RECENT FINDINGS: Lipoproteins activate the extracellular signal-regulated kinase and p38 mitogen-activated protein kinase pathways in all blood vessel cell types. This may require lipoprotein docking to scavenger receptor B1, allowing transfer of cholesterol and sphingosine-1-phosphate to plasma membranes. Subsequent propagation of the signals probably requires the stimulation of G protein-coupled receptors, followed by the transactivation of receptor tyrosine kinases. Lipoprotein-induced extracellular signal-regulated kinase activity favors cell proliferation, whereas lipoprotein-induced p38 mitogen-activated protein kinase activity leads to cell hyperplasia and promotes cell migration. Some signaling pathways and cellular effects induced by lipoproteins have been observed in atherosclerotic plaques and therefore represent potential targets for the development of anti-atherosclerotic drugs. SUMMARY: The main blood vessel cell types have the capacity to activate protein kinase pathways in the presence of lipoproteins. This induces cell proliferation, hyperplasia and migration, known to be dysregulated in atherosclerotic lesions.
Resumo:
AIMS/HYPOTHESIS: Disruption of the retinal pigment epithelial (RPE) barrier contributes to sub-retinal fluid and retinal oedema as observed in diabetic retinopathy. High placental growth factor (PLGF) vitreous levels have been found in diabetic patients. This work aimed to elucidate the influence of PLGF-1 on a human RPE cell line (ARPE-19) barrier in vitro and on normal rat eyes in vivo. METHODS: ARPE-19 permeability was measured using transepithelial resistance and inulin flux under stimulation of PLGF-1, vascular endothelial growth factor (VEGF)-E and VEGF 165. Using RT-PCR, we evaluated the effect of hypoxic conditions or insulin on transepithelial resistance and on PLGF-1 and VEGF receptors. The involvement of mitogen-activated protein kinase (MEK, also known as MAPK)/extracellular signal-regulated kinase (ERK, also known as EPHB2) signalling pathways under PLGF-1 stimulation was evaluated by western blot analysis and specific inhibitors. The effect of PLGF-1 on the external haemato-retinal barrier was evaluated after intravitreous injection of PLGF-1 in the rat eye; evaluation was by semi-thin analysis and zonula occludens-1 immunolocalisation on flat-mounted RPE. RESULTS: In vitro, PLGF-1 induced a reversible decrease of transepithelial resistance and enhanced tritiated inulin flux. These effects were specifically abolished by an antisense oligonucleotide directed at VEGF receptor 1. Exposure of ARPE-19 cells to hypoxic conditions or to insulin induced an upregulation of PLGF-1 expression along with increased transcellular permeability. The PLGF-1-induced RPE cell permeability involved the MEK signalling pathway. Injection of PLGF-1 in the rat eye vitreous induced an opening of the RPE tight junctions with subsequent sub-retinal fluid accumulation, retinal oedema and cytoplasm translocation of junction proteins. CONCLUSIONS/INTERPRETATION: Our results indicate that PLGF-1 may be a potential regulation target for the control of diabetic retinal and macular oedema.
Resumo:
Summary Acquisition of lineage-specific cell cycle duration is an important feature of metazoan development. In Caenorhabditis a/egans, differences in cell cycle duration are already apparent in two-cell stage embryos, when the larger anterior blastomere AB divides before the smaller posterior blastomere P1. This time difference is under the control of anterior-posterior (A-P) polarity cues set by the PAR proteins. The mechanism by which these cues regulate the cell cycle machinery differentially in AB and P1 are incompletely understood. Previous work established that retardation of P1 cell division is due in part to preferential activation of an ATL1/CHK-1 dependent checkpoint in P1 but how the remaining time difference is controlled was not known at the onset of my work. The principal line of work in this thesis established that differential timing relies also on a mechanism that promotes mitosis onset preferentially in AB. The polo-like kinase PLK-1, a positive regulator of mitotic entry, is distributed in an asymmetric manner in two-cell stage embryos, with more protein present in AB than in P1. We find that PLK-1 asymmetry is regulated by anterior-posterior (A-P) polarity cues through preferential protein retention in the embryo anterior. Importantly, mild inactivation of plk-1 by RNAi delays entry into mitosis in P1 but not in AB, in a manner that is independent of ATL-1/CHK-1. Together, these findings favor a model in which differential timing of mitotic entry in C. elegans embryos relies on two complementary mechanisms: ATL-1/CHK-1 dependent preferential retardation in P1 and PLK-1 dependent preferential promotion in AB, which together couple polarity cues and cell cycle progression during early development. Besides analyzing PLK-1 asymmetry and its role in differential timing of two-cells stage embryos, we also characterized t2190, a mutant that exhibits reduced differential timing between AB and P1. We found this mutant to be a new allele of par-1. Additionally, we analyzed the role of NMY-2 in regulating the asynchrony of two-cell stage embryos, which may be uncoupled from its role in A-P polarity establishment and carried out a preliminary analysis of the mechanism underlying CDC-25 asymmetry between AB and P,. Overall, our works bring new insights into the mechanism controlling cell cycle progression in early C. elegans embryos. As most of the players important in C. elegans are conserved in other organisms, analogous mechanisms may be utilized in polarized cells of other species. Résumé Au cours du développement, les processus de division cellulaire sont régulés dans l'espace et le temps afin d'aboutir à la formation d'un organisme fonctionnel. Chez les Métazoaires, l'un des mécanismes de contrôle s'effectue au niveau de la durée du cycle cellulaire, celle-ci étant specifiée selon la lignée cellulaire. L'embryon du nématode Caenorhabditis elegans apparaît comme un excellent modèle d'étude de la régulation temporelle du cycle cellulaire. En effet, suite à la première division du zygote, l'embryon est alors composé de deux cellules de taille et d'identité différentes, appelées blastomères AB et P1. Ces deux cellules vont ensuite se diviser de manière asynchrone, le grand blastomère antérieur AB se divisant plus rapidement que le petit blastomère postérieur P1. Cette asynchronie de division est sous le contrôle des protéines PAR qui sont impliquées dans l'établissement de l'axe antéro-postérieur de l'embryon. A ce jour, les mécanismes moléculaires gouvernant ce processus d'asynchronie ne sont que partiellement compris. Des études menées précédemment ont établit que le retard de division observé dans le petit blastomère postérieur P1 était dû, en partie, à l'activation préférentielle dans cette cellule de ATL-1/CHK-1, protéines contrôlant la réponse à des erreurs dans le processus de réplication de l'ADN. L'analyse des autres mécanismes responsables de la différence temporelle d'entrée en mitose des deux cellules a été entreprise au cours de cette thèse. Nous avons considéré la possibilité que l'asynchronie de division était du à l'entrée préférentielle en mitose du grand blastomère AB. Nous avons établi que la protéine kinase PLK-1 (polo-like kinase 1), impliquée dans la régulation positive de la mitose, était distribuée de manière asymétrique dans l'embryon deux cellules. PLK-1 est en effet enrichi dans le blastomère AB. Cette localisation asymétrique de PLK-1 est sous le contrôle des protéines PAR et semble établie via une rétention de PLK-1 dans la cellule AB. Par ailleurs, nous avons démontré que l'inactivation partielle de plk-7 par interférence à ARN (RNAi) conduit à un délai de l'entrée en mitose de la cellule P1 spécifiquement, indépendamment des protéines régulatrices ATL-1/CHK-1. En conclusion, nous proposons un modèle de régulation temporelle de l'entrée en mitose dans l'embryon deux cellules de C. elegans basé sur deux mécanismes complémentaires. Le premier implique l'activation préférentielle des protéines ATL-1/CHK-1, et conduit à un retard d'entrée en mitose spécifiquement dans la cellule P1. Le second est basé sur la localisation asymétrique de la protéine kinase PLK-1 dans la cellule AB et induit une entrée précoce en mitose de cette cellule. Par ailleurs, nous avons étudié un mutant appelé t2190 qui réduit la différence temporelle d'entrée en mitose entre les cellules AB et P1. Nous avons démontré que ce mutant correspondait à un nouvel allèle du Bene par-1. De plus, nous avons analysé le rôle de NMY-2, une protéine myosine qui agit comme moteur moléculaire sur les filaments d'active; dans la régulation de l'asynchronie de division des blastomères AB et P1, indépendamment de sa fonction dans l'établissement de l'axe antéro-postérieur. Par ailleurs, nous avons commencé l'étude du mécanisme moléculaire régulant la localisation asymétrique entre les cellules AB et P1 de la protéine phosphatase CDC25, qui est également un important régulateur de l'entrée en mitose. En conclusion, ce travail de thèse a permis une meilleure compréhension des mécanismes gouvernant la progression du cycle cellulaire dans l'embryon précoce de C. elegans. Etant donné que la plupart des protéines impliquées dans ces processus sont conservées chez d'autres organismes multicellulaires, il apparaît probable que les mécanismes moléculaires révélés dans cette étude soit aussi utilisés chez ceux-ci.
Resumo:
BACKGROUND: Activation of Fas (CD95) by its ligand (FasL) rapidly induces cell death through recruitment and activation of caspase-8 via the adaptor protein Fas-associated death domain protein (FADD). However, Fas signals do not always result in apoptosis but can also trigger a pathway that leads to proliferation. We investigated the level at which the two conflicting Fas signals diverge and the protein(s) that are implicated in switching the response. RESULTS: Under conditions in which proliferation of CD3-activated human T lymphocytes is increased by recombinant FasL, there was activation of the transcription factors NF-kappaB and AP-1 and recruitment of the caspase-8 inhibitor and FADD-interacting protein FLIP (FLICE-like inhibitory protein). Fas-recruited FLIP interacts with TNF-receptor associated factors 1 and 2, as well as with the kinases RIP and Raf-1, resulting in the activation of the NF-kappaB and extracellular signal regulated kinase (Erk) signaling pathways. In T cells these two signal pathways are critical for interleukin-2 production. Increased expression of FLIP in T cells resulted in increased production of interleukin-2. CONCLUSIONS: We provide evidence that FLIP is not simply an inhibitor of death-receptor-induced apoptosis but that it also mediates the activation of NF-kappaB and Erk by virtue of its capacity to recruit adaptor proteins involved in these signaling pathways.
Resumo:
Rationale: Peroxisome proliferator activated receptor (PPAR)-beta/delta is a transcription factor that belongs to the PPAR nuclear hormone receptor family, but the role of PPAR-beta/delta in sepsis is unknown. Objectives: We investigated the role of PPAR-beta/delta in murine models of LPS-induced organ injury and dysfunction and cecal ligation and puncture (CLP)-induced polymicrobial sepsis. Methods: Wild-type (WT) and PPAR-beta/delta knockout (1(0) mice and C57BL/6 mice were subjected to LPS for 16 hours. C57BL/6 mice received the PPAR-beta/delta agonist GW0742 (0.03 mg/kg intravenously, 1 h after LPS) or GW0742 plus the PPAR-beta/delta antagonist GSK0660 (0.1 mg/kg intravenously, 30 min before LPS). CD-1 mice subjected to CLP received GW0742 or GW0742 plus GSK0660. Measurements and Main Results: In PPAR-beta/delta KO mice, endotoxemia exacerbated organ injury and dysfunction (cardiac, renal, and hepatic) and inflammation (lung) compared with WT mice. In C57BL/6 mice subjected to endotoxemia, GW0742 significantly (1) attenuated organ (cardiac and renal) dysfunction and inflammation (lung); (2) increased the phosphorylation of Akt and glycogen synthase kinase (GSK)-3 beta; (3) attenuated the increase in extracellular signal-regulated kinase (ERK)1/2 and signal transducer and activator of transcription (STAT)-3 phosphorylation; and (4) attenuated the activation of nuclear factor (NF)-kappa B and the expression of inducible nitric oxide synthase (iNOS). In CD-1 mice subjected to CLP, GW0742 improved 10-day survival. All the observed beneficial effects of GW0742 were attenuated by the PPAR-beta/delta antagonist GSK0660. Conclusions: PPAR-beta/delta protects against multiple organ injury and dysfunction, and inflammation caused by endotoxic shock and improves survival in polymicrobial sepsis by a mechanism that may involve activation of Akt and inhibition of GSK-3 beta and NF-kappa B.
Resumo:
Arenaviruses perturb innate antiviral defense by blocking induction of type I interferon (IFN) production. Accordingly, the arenavirus nucleoprotein (NP) was shown to block activation and nuclear translocation of interferon regulatory factor 3 (IRF3) in response to virus infection. Here, we sought to identify cellular factors involved in innate antiviral signaling targeted by arenavirus NP. Consistent with previous studies, infection with the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) prevented phosphorylation of IRF3 in response to infection with Sendai virus, a strong inducer of the retinoic acid-inducible gene I (RIG-I)/mitochondrial antiviral signaling (MAVS) pathway of innate antiviral signaling. Using a combination of coimmunoprecipitation and confocal microscopy, we found that LCMV NP associates with the IκB kinase (IKK)-related kinase IKKε but that, rather unexpectedly, LCMV NP did not bind to the closely related TANK-binding kinase 1 (TBK-1). The NP-IKKε interaction was highly conserved among arenaviruses from different clades. In LCMV-infected cells, IKKε colocalized with NP but not with MAVS located on the outer membrane of mitochondria. LCMV NP bound the kinase domain (KD) of IKKε (IKBKE) and blocked its autocatalytic activity and its ability to phosphorylate IRF3, without undergoing phosphorylation. Together, our data identify IKKε as a novel target of arenavirus NP. Engagement of NP seems to sequester IKKε in an inactive complex. Considering the important functions of IKKε in innate antiviral immunity and other cellular processes, the NP-IKKε interaction likely plays a crucial role in arenavirus-host interaction.
Resumo:
AIM/HYPOTHESIS: Endoplasmic reticulum (ER) stress, which is involved in the link between inflammation and insulin resistance, contributes to the development of type 2 diabetes mellitus. In this study, we assessed whether peroxisome proliferator-activated receptor (PPAR)β/δ prevented ER stress-associated inflammation and insulin resistance in skeletal muscle cells. METHODS: Studies were conducted in mouse C2C12 myotubes, in the human myogenic cell line LHCN-M2 and in skeletal muscle from wild-type and PPARβ/δ-deficient mice and mice exposed to a high-fat diet. RESULTS: The PPARβ/δ agonist GW501516 prevented lipid-induced ER stress in mouse and human myotubes and in skeletal muscle of mice fed a high-fat diet. PPARβ/δ activation also prevented thapsigargin- and tunicamycin-induced ER stress in human and murine skeletal muscle cells. In agreement with this, PPARβ/δ activation prevented ER stress-associated inflammation and insulin resistance, and glucose-intolerant PPARβ/δ-deficient mice showed increased phosphorylated levels of inositol-requiring 1 transmembrane kinase/endonuclease-1α in skeletal muscle. Our findings demonstrate that PPARβ/δ activation prevents ER stress through the activation of AMP-activated protein kinase (AMPK), and the subsequent inhibition of extracellular-signal-regulated kinase (ERK)1/2 due to the inhibitory crosstalk between AMPK and ERK1/2, since overexpression of a dominant negative AMPK construct (K45R) reversed the effects attained by PPARβ/δ activation. CONCLUSIONS/INTERPRETATION: Overall, these findings indicate that PPARβ/δ prevents ER stress, inflammation and insulin resistance in skeletal muscle cells by activating AMPK.
Resumo:
The retinal pigment epithelium (RPE) is constantly exposed to external injuries which lead to degeneration, dysfunction or loss of RPE cells. The balance between RPE cells death and proliferation may be responsible for several diseases of the underlying retina, including age-related macular degeneration (AMD) and proliferative vitreoretinopathy (PVR). Signaling pathways able to control cells proliferation or death usually involve the MAPK (mitogen-activated protein kinases) pathways, which modulate the activity of transcription factors by phosphorylation. UV exposure induces DNA breakdown and causes cellular damage through the production of reactive oxygen species (ROS) leading to programmed cell death. In this study, human retinal pigment epithelial cells ARPE19 were exposed to 100 J/m(2) of UV-C and MAPK pathways were studied. We first showed the expression of the three major MAPK pathways. Then we showed that activator protein-1 (AP-1) was activated through phosphorylation of cJun and cFos, induced by JNK and p38, respectively. Specific inhibitors of both kinases decreased their respective activities and phosphorylation of their nuclear targets (cJun and cFos) and reduced UV-induced cell death. The use of specific kinases inhibitors may provide excellent tools to prevent RPE apoptosis specifically in RPE diseases involving ROS and other stress-related compounds such as in AMD.
Resumo:
OBJECTIVE It has been suggested that interleukin (IL)-6 is one of the mediators linking obesity-derived chronic inflammation with insulin resistance through activation of STAT3, with subsequent upregulation of suppressor of cytokine signaling 3 (SOCS3). We evaluated whether peroxisome proliferator-activated receptor (PPAR)-β/-δ prevented activation of the IL-6-STAT3-SOCS3 pathway and insulin resistance in adipocytes. RESEARCH DESIGN AND METHODS First, we observed that the PPAR-β/-δ agonist GW501516 prevented both IL-6-dependent reduction in insulin-stimulated Akt phosphorylation and glucose uptake in adipocytes. In addition, this drug treatment abolished IL-6-induced SOCS3 expression in differentiated 3T3-L1 adipocytes. This effect was associated with the capacity of the drug to prevent IL-6-induced STAT3 phosphorylation on Tyr(705) and Ser(727) residues in vitro and in vivo. Moreover, GW501516 prevented IL-6-dependent induction of extracellular signal-related kinase (ERK)1/2, a serine-threonine-protein kinase involved in serine STAT3 phosphorylation. Furthermore, in white adipose tissue from PPAR-β/-δ-null mice, STAT3 phosphorylation (Tyr(705) and Ser(727)), STAT3 DNA-binding activity, and SOCS3 protein levels were higher than in wild-type mice. Several steps in STAT3 activation require its association with heat shock protein 90 (Hsp90), which was prevented by GW501516 as revealed in immunoprecipitation studies. Consistent with this finding, the STAT3-Hsp90 association was enhanced in white adipose tissue from PPAR-β/-δ-null mice compared with wild-type mice. CONCLUSIONS Collectively, our findings indicate that PPAR-β/-δ activation prevents IL-6-induced STAT3 activation by inhibiting ERK1/2 and preventing the STAT3-Hsp90 association, an effect that may contribute to the prevention of cytokine-induced insulin resistance in adipocytes.
Resumo:
Mitochondrial impairment is hypothesized to contribute to the pathogenesis of insulin resistance. Mitofusin (Mfn) proteins regulate the biogenesis and maintenance of the mitochondrial network, and when inactivated, cause a failure in the mitochondrial architecture and decreases in oxidative capacity and glucose oxidation. Exercise increases muscle mitochondrial content, size, oxidative capacity and aerobic glucose oxidation. To address if Mfn proteins are implicated in these exercise-induced responses, we measured Mfn1 and Mfn2 mRNA levels, pre-, post-, 2 and 24 h post-exercise. Additionally, we measured the expression levels of transcriptional regulators that control mitochondrial biogenesis and functions, including PGC-1alpha, NRF-1, NRF-2 and the recently implicated ERRalpha. We show that Mfn1, Mfn2, NRF-2 and COX IV mRNA were increased 24 h post-exercise, while PGC-1alpha and ERRalpha mRNA increased 2 h post-exercise. Finally, using in vitro cellular assays, we demonstrate that Mfn2 gene expression is driven by a PGC-1alpha programme dependent on ERRalpha. The PGC-1alpha/ERRalpha-mediated induction of Mfn2 suggests a role of these two factors in mitochondrial fusion. Our results provide evidence that PGC-1alpha not only mediates the increased expression of oxidative phosphorylation genes but also mediates alterations in mitochondrial architecture in response to aerobic exercise in humans
Resumo:
P-selectin glycoprotein ligand-1 (PSGL-1) interacts with selectins to support leukocyte rolling along vascular wall. L- and P-selectin bind to N-terminal tyrosine sulfate residues and to core-2 O-glycans attached to Thr-57, whereas tyrosine sulfation is not required for E-selectin binding. PSGL-1 extracellular domain contains decameric repeats, which extend L- and P-selectin binding sites far above the plasma membrane. We hypothesized that decamers may play a role in regulating PSGL-1 interactions with selectins. Chinese hamster ovary cells expressing wild-type PSGL-1 or PSGL-1 molecules exhibiting deletion or substitution of decamers with the tandem repeats of platelet glycoprotein Ibalpha were compared in their ability to roll on selectins and to bind soluble L- or P-selectin. Deletion of decamers abrogated soluble L-selectin binding and cell rolling on L-selectin, whereas their substitution partially reversed these diminutions. P-selectin-dependent interactions with PSGL-1 were less affected by decamer deletion. Videomicroscopy analysis showed that decamers are required to stabilize L-selectin-dependent rolling. Importantly, adhesion assays performed on recombinant decamers demonstrated that they directly bind to E-selectin and promote slow rolling. Our results indicate that the role of decamers is to extend PSGL-1 N terminus far above the cell surface to support and stabilize leukocyte rolling on L- or P-selectin. In addition, they function as a cell adhesion receptor, which supports approximately 80% of E-selectin-dependent rolling.
Resumo:
Catecholamines and alpha(1)-adrenergic receptors (alpha(1)-ARs) cause cardiac hypertrophy in cultured myocytes and transgenic mice, but heart size is normal in single KOs of the main alpha(1)-AR subtypes, alpha(1A/C) and alpha(1B). Here we tested whether alpha(1)-ARs are required for developmental cardiac hypertrophy by generating alpha(1A/C) and alpha(1B) double KO (ABKO) mice, which had no cardiac alpha(1)-AR binding. In male ABKO mice, heart growth after weaning was 40% less than in WT, and the smaller heart was due to smaller myocytes. Body and other organ weights were unchanged, indicating a specific effect on the heart. Blood pressure in ABKO mice was the same as in WT, showing that the smaller heart was not due to decreased load. Contractile function was normal by echocardiography in awake mice, but the smaller heart and a slower heart rate reduced cardiac output. alpha(1)-AR stimulation did not activate extracellular signal-regulated kinase (Erk) and downstream kinases in ABKO myocytes, and basal Erk activity was lower in the intact ABKO heart. In female ABKO mice, heart size was normal, even after ovariectomy. Male ABKO mice had reduced exercise capacity and increased mortality with pressure overload. Thus, alpha(1)-ARs in male mice are required for the physiological hypertrophy of normal postnatal cardiac development and for an adaptive response to cardiac stress.