30 resultados para Rocks -- Catalonia -- Forallac
Resumo:
We study wave-induced fluid flow effects in porous rocks partially saturated with gas and water, where the saturation patterns are governed by mesoscopic heterogeneities associated with the dry frame properties. The link between the dry frame properties and the gas saturation is defined by the assumption of capillary pressure equilibrium, which in the presence of heterogeneity implies that neighboring regions can exhibit different levels of saturation. In order to determine the equivalent attenuation and phase velocity of the synthetic rock samples considered in this study, we apply a numerical upscaling procedure, which permits to take into account mesoscopic heterogeneities associated with the dry frame properties as well as spatially continuous variations of the pore fluid properties. We consider numerical experiments to analyze such effects in heterogeneous partially saturated porous media, where the saturation field is determined by realistic variations in porosity. Our results indicate that the spatially continuous nature of gas saturation inherent to this study is a critical parameter controlling the seismic response of these environments, which in turn suggests that the physical mechanisms governing partial saturation should be accounted for when analyzing seismic data in a poro-elastic context.
Resumo:
The Cretaceous Mont Saint-Hilaire complex (Quebec, Canada) comprises three major rock units that were emplaced in the following sequence: (I) gabbros; (II) diorites; (III) diverse partly agpaitic foid syenites. The major element compositions of the rock-forming minerals, age-corrected Nd and oxygen isotope data for mineral separates and trace element data of Fe-Mg silicates from the various lithologies imply a common source for all units. The distribution of the rare earth elements in clinopyroxene from the gabbros indicates an ocean island basalt type composition for the parental magma. Gabbros record temperatures of 1200 to 800 degrees C, variable silica activities between 0 center dot 7 and 0 center dot 3, and f(O2) values between -0 center dot 5 and +0 center dot 7 (log delta FMQ, where FMQ is fayalite-magnetite-quartz). The diorites crystallized under uniform a(SiO2) (a(SiO2) = 0 center dot 4-0 center dot 5) and more reduced f(O2) conditions (log delta FMQ similar to-1) between similar to 1100 and similar to 800 degrees C. Phase equilibria in various foid syenites indicate that silica activities decrease from 0 center dot 6-0 center dot 3 at similar to 1000 degrees C to < 0 center dot 3 at similar to 550 degrees C. Release of an aqueous fluid during the transition to the hydrothermal stage caused a(SiO2) to drop to very low values, which results from reduced SiO(2) solubilities in aqueous fluids compared with silicate melts. During the hydrothermal stage, high water activities stabilized zeolite-group minerals. Fluid inclusions record a complex post-magmatic history, which includes trapping of an aqueous fluid that unmixed from the restitic foid syenitic magma. Cogenetic aqueous and carbonic fluid inclusions reflect heterogeneous trapping of coexisting immiscible external fluids in the latest evolutionary stage. The O and C isotope characteristics of fluid-inclusion hosted CO(2) and late-stage carbonates imply that the surrounding limestones were the source of the external fluids. The mineral-rich syenitic rocks at Mont Saint-Hilaire evolved as follows: first, alkalis, high field strength and large ion lithophile elements were pre-enriched in the (late) magmatic and subsequent hydrothermal stages; second, percolation of external fluids in equilibrium with the carbonate host-rocks and mixing processes with internal fluids as well as fluid-rock interaction governed dissolution of pre-existing minerals, element transport and precipitation of mineral assemblages determined by locally variable parameters. It is this hydrothermal interplay between internal and external fluids that is responsible for the mineral wealth found at Mont Saint-Hilaire.
Resumo:
Phengites from the eclogite and blueschist-facies sequences of the Cycladic island of Syros (Greece) have been dated by the in situ UV-laser ablation Ar-40/Ar-39 method. A massive, phengite-rich eclogite and an omphacite-rich metagabbro were investigated. The phengites are eubedral and coarse-grained (several 100 mum), strain-free and exhibit no evidence for late brittle deformation or recrystallization. Apparent ages in these samples range from 43 to 50 Ma for the phengite-rich eclogite and 42 to 52 Ma for the ompbacitic metagabbro. This large spread of ages is visible at all scales-within individual grains as well as in domains of several 100 mum and across the entire sample (ca. 2 cm). Such variations have been traditionally attributed to metamorphic cooling or the incorporation of excess argon. However, the textural equilibrium between the phengites and other high pressure phases and the subtle compositional variations within the phengites, especially the preservation of growth textures, alternatively suggest that the observed range in ages may reflect variations of radiogenic argon acquired during phengite formation and subsequent growth, thus dating a discrete event on the prograde path. This implies that the oldest phengite 40Ar/39Ar ages provide the best estimate of a minimum crystallization age, which is in agreement with recently reported U-Pb and Lu-Hf geochronological data. Our results are consistent with available stable isotope data and further suggest that, under fluid-restricted conditions, both stable and radiogenic isotopic systems can survive without significant isotopic exchange during subduction and exhumation from eclogite-facies P-T conditions. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
In order to evaluate the influence of continental crustal rocks on trace element budgets of serpentinized peridotites incorporated into the continental crust, we have analyzed the chemical composition of whole rock samples and minerals of the Geisspfad ultramafic complex (Swiss-Italian Alps). This complex represents a relict oceanic succession composed of serpentinites, ophicarbonates and metabasic rocks, emplaced into crustal gneisses during Alpine collision. Following peak metamorphic amphibolite facies conditions, fluid flow modified some of the trace element contents of ophicarbonates and deformed serpentinites close to the contact with country rocks. The fluid originated from the surrounding continental crustal rocks as documented by the increase of Pb in the serpentinites, and by the strongly negative all) values (-112 parts per thousand) of some ultramafic rocks close to the contact with surrounding gneisses. Little or no modification of the fluid mobile elements Li, B or U was observed in the serpentinite. In-situ analysis of light elements of serpentinite minerals indicate redistribution of light elements coupled to changes of mineral modes towards the outer 100-150 m of the massif. In the centre of the massif, Li is preferentially concentrated in olivine, while Be and B are hosted by tremolite. In contrast, at the outer rim of the massif, Li and Be are preferentially incorporated into diopside, and B into antigorite. This redistribution of light elements among the different minerals is visible in the serpentinite, at a maximum distance of -100-150 m from the ophicarbonate-metabasite contact. Our results show that interaction of ultramafic rocks and crust-derived fluids can be easily detected by studies of Pb and partial derivative D in whole rocks. We argue that small ultramafic bodies potentially record an emplacement-related trace element signature, and that crustal light element values in ultramafic rocks are not necessarily derived from a subducting slab. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In the eastern Bulgarian Rhodope, mafic extrusive rocks and underlying greenschists are found in the Mesozoic low-grade unit, which represents the northern extension of similar sequences including the Evros ophiolites in Thrace (Greece). Both rock types define a suite of low-Ti tholeiitic basalts to transitional boninitic basaltic andesites and andesites and associated metapyroclastites (greenschists), intruded at its base by diorite dikes of a boninitic affinity. Mafic lavas and greenschists display large ion lithophile element (LILE) enrichment relative to high-field strength elements (HFSE), flat REE patterns of a slight light REE depletion, a strong island arc tholeiite (IAT) and weak MORB-like signature. All these rocks are characterized by negative Nb anomalies ascribed to arc lavas. They have positive epsilon Nd(i) values in the range of +4.87 to +6.09, approaching the lower limit of MORB-like source, and relatively high ((207)Pb/(204)Pb)(i) (15.57-15.663) at low ((206)Pb/(204)Pb)(i) (18.13-18.54) ratios. The Nd isotopic compositions coupled with trace element data imply a dominantly depleted MORB-like mantle source and a contribution of subduction modified LILE-enriched component derived from the mantle wedge. The diorite dike has a low eNdi value of -2.61 and is slightly more Pb radiogenic ((207)Pb/(204)Pb)(i) (15.64) and ((206)Pb/(204)Pb)(i) (18.56), respectively, reflecting crustal contamination. Petrologic and geochemical data indicate that the greenschists and mafic extrusive rocks represent a magmatic assemblage formed in an island arc setting. The magmatic suite is interpreted as representing an island arc-accretionary complex related to the southward subduction of the Meliata-Maliac ocean under the supra-subduction back-arc Vardar ocean/island arc system. Magmatic activity appears to have initiated in the north during the inception of the island arc system by the Early-Middle Jurassic time in the eastern Rhodope that most likely graded to back-arc spreading southwards as represented by the Late Jurassic MORB-type Samothraki Island ophiolites. This tectonic scenario is further constrained by paleotectonic reconstructions. The arc-trench system collided with the Rhodope in the Late Jurassic times. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Organic geochemical and stable isotope investigations were performed to provide an insight into the depositional environments, origin and maturity of the organic matter in Jurassic and Cretaceous formations of the External Dinarides. A correlation is made among various parameters acquired from Rock-Eval, gas chromatography-mass spectrometry data and isotope analysis of carbonates and kerogen. Three groups of samples were analysed. The first group includes source rocks derived from Lower Jurassic limestone and Upper Jurassic ``Leme'' beds, the second from Upper Cretaceous carbonates, while the third group comprises oil seeps genetically connected with Upper Cretaceous source rocks. The carbon and oxygen isotopic ratios of all the carbonates display marine isotopic composition. Rock-Eval data and maturity parameter values derived from biomarkers define the organic matter of the Upper Cretaceous carbonates as Type I-S and Type II-S kerogen at the low stage of maturity up to entering the oil-generating window. Lower and Upper Jurassic source rocks contain early mature Type III mixed with Type IV organic matter. All Jurassic and Cretaceous potential source rock extracts show similarity in triterpane and sterane distribution. The hopane and sterane distribution pattern of the studied oil seeps correspond to those from Cretaceous source rocks. The difference between Cretaceous oil seeps and potential source rock extracts was found in the intensity and distribution of n-alkanes, as well as in the abundance of asphaltenes which is connected to their biodegradation stage. In the Jurassic and Cretaceous potential source rock samples a mixture of aromatic hydrocarbons with their alkyl derivatives were indicated, whereas in the oil seep samples extracts only asphaltenes were observed.
Resumo:
Low pressure partial melting of basanitic and ankaramitic dykes gave rise to unusual, zebra-like migmatites, in the contact aureole of a layered pyroxenite-gabbro intrusion, in the root zone of an ocean island (Basal Complex, Fuerteventura, Canary Islands). These migmatites are characterised by a dense network of closely spaced, millimetre-wide leucocratic segregations. Their mineralogy consists of plagioclase (An(32-36)), diopside, biotite, oxides (magnetite, ilmenite), +/-amphibole, dominated by plagioclase in the leucosome and diopside in the melanosome. The melanosome is almost completely recrystallised, with the preservation of large, relict igneous diopside phenocrysts in dyke centres. Comparison of whole-rock and mineral major- and trace-element data allowed us to assess the redistribution of elements between different mineral phases and generations during contact metamorphism and partial melting. Dykes within and outside the thermal aureole behaved like closed chemical systems. Nevertheless, Zr, Hf, Y and REEs were internally redistributed, as deduced by comparing the trace element contents of the various diopside generations. Neocrystallised diopside - in the melanosome, leucosome and as epitaxial phenocryst rims - from the migmatite zone, are all enriched in Zr, Hf, Y and REEs compared to relict phenocrysts. This has been assigned to the liberation of trace elements on the breakdown of enriched primary minerals, kaersutite and sphene, on entering the thermal aureole. Major and trace element compositions of minerals in migmatite melanosomes and leucosomes are almost identical, pointing to a syn- or post-solidus reequilibration on the cooling of the migmatite terrain i.e. mineral-melt equilibria were reset to mineral-mineral equilibria. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
ABSTRACTThe pollution of air, soil and water by heavy metals through anthropogenic activities is an object of numerous environmental studies since long times. A number of natural processes, such as volcanic activity, hydrothermal fluid circulation and weathering of metal-rich deposits may lead to an additional and potentially important input and accumulation of heavy metals in the environment. In the Swiss and French Jura Mountains, anomalous high cadmium (Cd) concentrations (up to 16 ppm) in certain soils are related to the presence of underlying Cd-enriched (up to 21 ppm) carbonate rocks of Middle to Late Jurassic age. The aim of this study is to understand the processes controlling Cd incorporation into carbonate rocks of Middle and Late Jurassic age and to reconstruct the sedimentary and environmental conditions, which have led to Cd enrichments in these sedimentary rocks.Cd concentrations in studied hemipelagic sections in France vary between 0.1 and 0.5 ppm (mean 0.15 ppm). Trace-element behavior and high Mn concentrations suggest that sediment accumulation occurred in a well-oxygenated environment. Increases in Cd contents in the bulk-rock carbonate sediments may be related to increases in surface-water productivity under oxic conditions and important remineralization of organic matter within the water column. In platform settings preserved in the Swiss Jura Mountains, no correlation is observed between Cd contents and evolution of environmental conditions. Cd concentrations in these platform sections are often below the detection limit, with isolated peaks of up to 21 ppm. These important Cd enrichments are associated with peaks in Zn concentrations and are present in carbonate rocks independently of facies and age. The high Cd contents in these shallow-water carbonate rocks are partly related to the presence of disseminated, Cd-rich (up to 1.8%), sphalerite (ZnS) mineralization. The basement rocks are considered to be the source of metals for sulfide mineralization in the overlying Jurassic strata, as the sphalerite Pb isotope pattern is comparable to that of granite rocks from the nearby southern Black Forest crystalline massif. The Rb-Sr ages of sphalerite samples indicate that a main phase of sphalerite formation occurred near the boundary between the late Middle and early Late Jurassic, at around 162 Ma, as a result of enhanced tectonic and hydrothermal activity in Europe, related to the opening of the Central Atlantic and to the tectonic/thermal subsidence during spreading of the Alpine Tethys. I therefore propose to use unusually high Cd concentrations in carbonates as a tracer of tectonic activity in the Jura Mountains area, especially in the case when important enrichments in Zn co-occur. Paleoproductivity reconstructions based on records of authigenic Cd may be compromised not only by post-depositional redistribution, but also by incorporation of additional Cd from hydrothermal solutions circulating in the rock.The circulation of metal-rich hydrothermal fluids through the sediment sequence, in addition to specific environmental conditions during sedimentation, contributes to the incorporation of Cd into the carbonate rocks. However, only hydrothermal activity has led to the unusually high concentrations of Cd in carbonate rocks of Bajocian-Oxfordian age, through the formation of sphalerite mineralization.
Resumo:
Understanding and quantifying seismic energy dissipation, which manifests itself in terms of velocity dispersion and attenuation, in fluid-saturated porous rocks is of considerable interest, since it offers the perspective of extracting information with regard to the elastic and hydraulic rock properties. There is increasing evidence to suggest that wave-induced fluid flow, or simply WIFF, is the dominant underlying physical mechanism governing these phenomena throughout the seismic, sonic, and ultrasonic frequency ranges. This mechanism, which can prevail at the microscopic, mesoscopic, and macroscopic scale ranges, operates through viscous energy dissipation in response to fluid pressure gradients and inertial effects induced by the passing wavefield. In the first part of this thesis, we present an analysis of broad-band multi-frequency sonic log data from a borehole penetrating water-saturated unconsolidated glacio-fluvial sediments. An inherent complication arising in the interpretation of the observed P-wave attenuation and velocity dispersion is, however, that the relative importance of WIFF at the various scales is unknown and difficult to unravel. An important generic result of our work is that the levels of attenuation and velocity dispersion due to the presence of mesoscopic heterogeneities in water-saturated unconsolidated clastic sediments are expected to be largely negligible. Conversely, WIFF at the macroscopic scale allows for explaining most of the considered data while refinements provided by including WIFF at the microscopic scale in the analysis are locally meaningful. Using a Monte-Carlo-type inversion approach, we compare the capability of the different models describing WIFF at the macroscopic and microscopic scales with regard to their ability to constrain the dry frame elastic moduli and the permeability as well as their local probability distribution. In the second part of this thesis, we explore the issue of determining the size of a representative elementary volume (REV) arising in the numerical upscaling procedures of effective seismic velocity dispersion and attenuation of heterogeneous media. To this end, we focus on a set of idealized synthetic rock samples characterized by the presence of layers, fractures or patchy saturation in the mesocopic scale range. These scenarios are highly pertinent because they tend to be associated with very high levels of velocity dispersion and attenuation caused by WIFF in the mesoscopic scale range. The problem of determining the REV size for generic heterogeneous rocks is extremely complex and entirely unexplored in the given context. In this pilot study, we have therefore focused on periodic media, which assures the inherent self- similarity of the considered samples regardless of their size and thus simplifies the problem to a systematic analysis of the dependence of the REV size on the applied boundary conditions in the numerical simulations. Our results demonstrate that boundary condition effects are absent for layered media and negligible in the presence of patchy saturation, thus resulting in minimum REV sizes. Conversely, strong boundary condition effects arise in the presence of a periodic distribution of finite-length fractures, thus leading to large REV sizes. In the third part of the thesis, we propose a novel effective poroelastic model for periodic media characterized by mesoscopic layering, which accounts for WIFF at both the macroscopic and mesoscopic scales as well as for the anisotropy associated with the layering. Correspondingly, this model correctly predicts the existence of the fast and slow P-waves as well as quasi and pure S-waves for any direction of wave propagation as long as the corresponding wavelengths are much larger than the layer thicknesses. The primary motivation for this work is that, for formations of intermediate to high permeability, such as, for example, unconsolidated sediments, clean sandstones, or fractured rocks, these two WIFF mechanisms may prevail at similar frequencies. This scenario, which can be expected rather common, cannot be accounted for by existing models for layered porous media. Comparisons of analytical solutions of the P- and S-wave phase velocities and inverse quality factors for wave propagation perpendicular to the layering with those obtained from numerical simulations based on a ID finite-element solution of the poroelastic equations of motion show very good agreement as long as the assumption of long wavelengths remains valid. A limitation of the proposed model is its inability to account for inertial effects in mesoscopic WIFF when both WIFF mechanisms prevail at similar frequencies. Our results do, however, also indicate that the associated error is likely to be relatively small, as, even at frequencies at which both inertial and scattering effects are expected to be at play, the proposed model provides a solution that is remarkably close to its numerical benchmark. -- Comprendre et pouvoir quantifier la dissipation d'énergie sismique qui se traduit par la dispersion et l'atténuation des vitesses dans les roches poreuses et saturées en fluide est un intérêt primordial pour obtenir des informations à propos des propriétés élastique et hydraulique des roches en question. De plus en plus d'études montrent que le déplacement relatif du fluide par rapport au solide induit par le passage de l'onde (wave induced fluid flow en anglais, dont on gardera ici l'abréviation largement utilisée, WIFF), représente le principal mécanisme physique qui régit ces phénomènes, pour la gamme des fréquences sismiques, sonique et jusqu'à l'ultrasonique. Ce mécanisme, qui prédomine aux échelles microscopique, mésoscopique et macroscopique, est lié à la dissipation d'énergie visqueuse résultant des gradients de pression de fluide et des effets inertiels induits par le passage du champ d'onde. Dans la première partie de cette thèse, nous présentons une analyse de données de diagraphie acoustique à large bande et multifréquences, issues d'un forage réalisé dans des sédiments glaciaux-fluviaux, non-consolidés et saturés en eau. La difficulté inhérente à l'interprétation de l'atténuation et de la dispersion des vitesses des ondes P observées, est que l'importance des WIFF aux différentes échelles est inconnue et difficile à quantifier. Notre étude montre que l'on peut négliger le taux d'atténuation et de dispersion des vitesses dû à la présence d'hétérogénéités à l'échelle mésoscopique dans des sédiments clastiques, non- consolidés et saturés en eau. A l'inverse, les WIFF à l'échelle macroscopique expliquent la plupart des données, tandis que les précisions apportées par les WIFF à l'échelle microscopique sont localement significatives. En utilisant une méthode d'inversion du type Monte-Carlo, nous avons comparé, pour les deux modèles WIFF aux échelles macroscopique et microscopique, leur capacité à contraindre les modules élastiques de la matrice sèche et la perméabilité ainsi que leur distribution de probabilité locale. Dans une seconde partie de cette thèse, nous cherchons une solution pour déterminer la dimension d'un volume élémentaire représentatif (noté VER). Cette problématique se pose dans les procédures numériques de changement d'échelle pour déterminer l'atténuation effective et la dispersion effective de la vitesse sismique dans un milieu hétérogène. Pour ce faire, nous nous concentrons sur un ensemble d'échantillons de roches synthétiques idéalisés incluant des strates, des fissures, ou une saturation partielle à l'échelle mésoscopique. Ces scénarios sont hautement pertinents, car ils sont associés à un taux très élevé d'atténuation et de dispersion des vitesses causé par les WIFF à l'échelle mésoscopique. L'enjeu de déterminer la dimension d'un VER pour une roche hétérogène est très complexe et encore inexploré dans le contexte actuel. Dans cette étude-pilote, nous nous focalisons sur des milieux périodiques, qui assurent l'autosimilarité des échantillons considérés indépendamment de leur taille. Ainsi, nous simplifions le problème à une analyse systématique de la dépendance de la dimension des VER aux conditions aux limites appliquées. Nos résultats indiquent que les effets des conditions aux limites sont absents pour un milieu stratifié, et négligeables pour un milieu à saturation partielle : cela résultant à des dimensions petites des VER. Au contraire, de forts effets des conditions aux limites apparaissent dans les milieux présentant une distribution périodique de fissures de taille finie : cela conduisant à de grandes dimensions des VER. Dans la troisième partie de cette thèse, nous proposons un nouveau modèle poro- élastique effectif, pour les milieux périodiques caractérisés par une stratification mésoscopique, qui prendra en compte les WIFF à la fois aux échelles mésoscopique et macroscopique, ainsi que l'anisotropie associée à ces strates. Ce modèle prédit alors avec exactitude l'existence des ondes P rapides et lentes ainsi que les quasis et pures ondes S, pour toutes les directions de propagation de l'onde, tant que la longueur d'onde correspondante est bien plus grande que l'épaisseur de la strate. L'intérêt principal de ce travail est que, pour les formations à perméabilité moyenne à élevée, comme, par exemple, les sédiments non- consolidés, les grès ou encore les roches fissurées, ces deux mécanismes d'WIFF peuvent avoir lieu à des fréquences similaires. Or, ce scénario, qui est assez commun, n'est pas décrit par les modèles existants pour les milieux poreux stratifiés. Les comparaisons des solutions analytiques des vitesses des ondes P et S et de l'atténuation de la propagation des ondes perpendiculaires à la stratification, avec les solutions obtenues à partir de simulations numériques en éléments finis, fondées sur une solution obtenue en 1D des équations poro- élastiques, montrent un très bon accord, tant que l'hypothèse des grandes longueurs d'onde reste valable. Il y a cependant une limitation de ce modèle qui est liée à son incapacité à prendre en compte les effets inertiels dans les WIFF mésoscopiques quand les deux mécanismes d'WIFF prédominent à des fréquences similaires. Néanmoins, nos résultats montrent aussi que l'erreur associée est relativement faible, même à des fréquences à laquelle sont attendus les deux effets d'inertie et de diffusion, indiquant que le modèle proposé fournit une solution qui est remarquablement proche de sa référence numérique.