29 resultados para Rockfall
Resumo:
Characterizing the geological features and structures in three dimensions over inaccessible rock cliffs is needed to assess natural hazards such as rockfalls and rockslides and also to perform investigations aimed at mapping geological contacts and building stratigraphy and fold models. Indeed, the detailed 3D data, such as LiDAR point clouds, allow to study accurately the hazard processes and the structure of geologic features, in particular in vertical and overhanging rock slopes. Thus, 3D geological models have a great potential of being applied to a wide range of geological investigations both in research and applied geology projects, such as mines, tunnels and reservoirs. Recent development of ground-based remote sensing techniques (LiDAR, photogrammetry and multispectral / hyperspectral images) are revolutionizing the acquisition of morphological and geological information. As a consequence, there is a great potential for improving the modeling of geological bodies as well as failure mechanisms and stability conditions by integrating detailed remote data. During the past ten years several large rockfall events occurred along important transportation corridors where millions of people travel every year (Switzerland: Gotthard motorway and railway; Canada: Sea to sky highway between Vancouver and Whistler). These events show that there is still a lack of knowledge concerning the detection of potential rockfalls, making mountain residential settlements and roads highly risky. It is necessary to understand the main factors that destabilize rocky outcrops even if inventories are lacking and if no clear morphological evidences of rockfall activity are observed. In order to increase the possibilities of forecasting potential future landslides, it is crucial to understand the evolution of rock slope stability. Defining the areas theoretically most prone to rockfalls can be particularly useful to simulate trajectory profiles and to generate hazard maps, which are the basis for land use planning in mountainous regions. The most important questions to address in order to assess rockfall hazard are: Where are the most probable sources for future rockfalls located? What are the frequencies of occurrence of these rockfalls? I characterized the fracturing patterns in the field and with LiDAR point clouds. Afterwards, I developed a model to compute the failure mechanisms on terrestrial point clouds in order to assess the susceptibility to rockfalls at the cliff scale. Similar procedures were already available to evaluate the susceptibility to rockfalls based on aerial digital elevation models. This new model gives the possibility to detect the most susceptible rockfall sources with unprecented detail in the vertical and overhanging areas. The results of the computation of the most probable rockfall source areas in granitic cliffs of Yosemite Valley and Mont-Blanc massif were then compared to the inventoried rockfall events to validate the calculation methods. Yosemite Valley was chosen as a test area because it has a particularly strong rockfall activity (about one rockfall every week) which leads to a high rockfall hazard. The west face of the Dru was also chosen for the relevant rockfall activity and especially because it was affected by some of the largest rockfalls that occurred in the Alps during the last 10 years. Moreover, both areas were suitable because of their huge vertical and overhanging cliffs that are difficult to study with classical methods. Limit equilibrium models have been applied to several case studies to evaluate the effects of different parameters on the stability of rockslope areas. The impact of the degradation of rockbridges on the stability of large compartments in the west face of the Dru was assessed using finite element modeling. In particular I conducted a back-analysis of the large rockfall event of 2005 (265'000 m3) by integrating field observations of joint conditions, characteristics of fracturing pattern and results of geomechanical tests on the intact rock. These analyses improved our understanding of the factors that influence the stability of rock compartments and were used to define the most probable future rockfall volumes at the Dru. Terrestrial laser scanning point clouds were also successfully employed to perform geological mapping in 3D, using the intensity of the backscattered signal. Another technique to obtain vertical geological maps is combining triangulated TLS mesh with 2D geological maps. At El Capitan (Yosemite Valley) we built a georeferenced vertical map of the main plutonio rocks that was used to investigate the reasons for preferential rockwall retreat rate. Additional efforts to characterize the erosion rate were made at Monte Generoso (Ticino, southern Switzerland) where I attempted to improve the estimation of long term erosion by taking into account also the volumes of the unstable rock compartments. Eventually, the following points summarize the main out puts of my research: The new model to compute the failure mechanisms and the rockfall susceptibility with 3D point clouds allows to define accurately the most probable rockfall source areas at the cliff scale. The analysis of the rockbridges at the Dru shows the potential of integrating detailed measurements of the fractures in geomechanical models of rockmass stability. The correction of the LiDAR intensity signal gives the possibility to classify a point cloud according to the rock type and then use this information to model complex geologic structures. The integration of these results, on rockmass fracturing and composition, with existing methods can improve rockfall hazard assessments and enhance the interpretation of the evolution of steep rockslopes. -- La caractérisation de la géologie en 3D pour des parois rocheuses inaccessibles est une étape nécessaire pour évaluer les dangers naturels tels que chutes de blocs et glissements rocheux, mais aussi pour réaliser des modèles stratigraphiques ou de structures plissées. Les modèles géologiques 3D ont un grand potentiel pour être appliqués dans une vaste gamme de travaux géologiques dans le domaine de la recherche, mais aussi dans des projets appliqués comme les mines, les tunnels ou les réservoirs. Les développements récents des outils de télédétection terrestre (LiDAR, photogrammétrie et imagerie multispectrale / hyperspectrale) sont en train de révolutionner l'acquisition d'informations géomorphologiques et géologiques. Par conséquence, il y a un grand potentiel d'amélioration pour la modélisation d'objets géologiques, ainsi que des mécanismes de rupture et des conditions de stabilité, en intégrant des données détaillées acquises à distance. Pour augmenter les possibilités de prévoir les éboulements futurs, il est fondamental de comprendre l'évolution actuelle de la stabilité des parois rocheuses. Définir les zones qui sont théoriquement plus propices aux chutes de blocs peut être très utile pour simuler les trajectoires de propagation des blocs et pour réaliser des cartes de danger, qui constituent la base de l'aménagement du territoire dans les régions de montagne. Les questions plus importantes à résoudre pour estimer le danger de chutes de blocs sont : Où se situent les sources plus probables pour les chutes de blocs et éboulement futurs ? Avec quelle fréquence vont se produire ces événements ? Donc, j'ai caractérisé les réseaux de fractures sur le terrain et avec des nuages de points LiDAR. Ensuite, j'ai développé un modèle pour calculer les mécanismes de rupture directement sur les nuages de points pour pouvoir évaluer la susceptibilité au déclenchement de chutes de blocs à l'échelle de la paroi. Les zones sources de chutes de blocs les plus probables dans les parois granitiques de la vallée de Yosemite et du massif du Mont-Blanc ont été calculées et ensuite comparés aux inventaires des événements pour vérifier les méthodes. Des modèles d'équilibre limite ont été appliqués à plusieurs cas d'études pour évaluer les effets de différents paramètres sur la stabilité des parois. L'impact de la dégradation des ponts rocheux sur la stabilité de grands compartiments de roche dans la paroi ouest du Petit Dru a été évalué en utilisant la modélisation par éléments finis. En particulier j'ai analysé le grand éboulement de 2005 (265'000 m3), qui a emporté l'entier du pilier sud-ouest. Dans le modèle j'ai intégré des observations des conditions des joints, les caractéristiques du réseau de fractures et les résultats de tests géoméchaniques sur la roche intacte. Ces analyses ont amélioré l'estimation des paramètres qui influencent la stabilité des compartiments rocheux et ont servi pour définir des volumes probables pour des éboulements futurs. Les nuages de points obtenus avec le scanner laser terrestre ont été utilisés avec succès aussi pour produire des cartes géologiques en 3D, en utilisant l'intensité du signal réfléchi. Une autre technique pour obtenir des cartes géologiques des zones verticales consiste à combiner un maillage LiDAR avec une carte géologique en 2D. A El Capitan (Yosemite Valley) nous avons pu géoréferencer une carte verticale des principales roches plutoniques que j'ai utilisé ensuite pour étudier les raisons d'une érosion préférentielle de certaines zones de la paroi. D'autres efforts pour quantifier le taux d'érosion ont été effectués au Monte Generoso (Ticino, Suisse) où j'ai essayé d'améliorer l'estimation de l'érosion au long terme en prenant en compte les volumes des compartiments rocheux instables. L'intégration de ces résultats, sur la fracturation et la composition de l'amas rocheux, avec les méthodes existantes permet d'améliorer la prise en compte de l'aléa chute de pierres et éboulements et augmente les possibilités d'interprétation de l'évolution des parois rocheuses.
Resumo:
The analysis of rockfall characteristics and spatial distribution is fundamental to understand and model the main factors that predispose to failure. In our study we analysed LiDAR point clouds aiming to: (1) detect and characterise single rockfalls; (2) investigate their spatial distribution. To this end, different cluster algorithms were applied: 1a) Nearest Neighbour Clutter Removal (NNCR) in combination with the Expectation?Maximization (EM) in order to separate feature points from clutter; 1b) a density based algorithm (DBSCAN) was applied to isolate the single clusters (i.e. the rockfall events); 2) finally we computed the Ripley's K-function to investigate the global spatial pattern of the extracted rockfalls. The method allowed proper identification and characterization of more than 600 rockfalls occurred on a cliff located in Puigcercos (Catalonia, Spain) during a time span of six months. The spatial distribution of these events proved that rockfall were clustered distributed at a welldefined distance-range. Computations were carried out using R free software for statistical computing and graphics. The understanding of the spatial distribution of precursory rockfalls may shed light on the forecasting of future failures.
Resumo:
This paper presents a short history of the appraisal of laser scanner technologies in geosciences used for imaging relief by high-resolution digital elevation models (HRDEMs) or 3D models. A general overview of light detection and ranging (LIDAR) techniques applied to landslides is given, followed by a review of different applications of LIDAR for landslide, rockfall and debris-flow. These applications are classified as: (1) Detection and characterization of mass movements; (2) Hazard assessment and susceptibility mapping; (3) Modelling; (4) Monitoring. This review emphasizes how LIDARderived HRDEMs can be used to investigate any type of landslides. It is clear that such HRDEMs are not yet a common tool for landslides investigations, but this technique has opened new domains of applications that still have to be developed.
Resumo:
The unstable rock slope, Stampa, above the village of Flåm, Norway, shows signs of both active and postglacial gravitational deformation over an area of 11 km2. Detailed structural field mapping, annual differential Global Navigation Satellite System (GNSS) surveys, as well as geomorphic analysis of high-resolution digital elevation models based on airborne and terrestrial laser scanning indicate that slope deformation is complex and spatially variable. Numerical modeling was used to investigate the influence of former rockslide activity and to better understand the failure mechanism. Field observations, kinematic analysis and numerical modeling indicate a strong structural control of the unstable area. Based on the integration of the above analyses, we propose that the failure mechanism is dominated by (1) a toppling component, (2) subsiding bilinear wedge failure and (3) planar sliding along the foliation at the toe of the unstable slope. Using differential GNSS, 18 points were measured annually over a period of up to 6 years. Two of these points have an average yearly movement of around 10 mm/year. They are located at the frontal cliff on almost completely detached blocks with volumes smaller than 300,000 m3. Large fractures indicate deep-seated gravitational deformation of volumes reaching several 100 million m3, but the movement rates in these areas are below 2 mm/year. Two different lobes of prehistoric rock slope failures were dated with terrestrial cosmogenic nuclides. While the northern lobe gave an average age of 4,300 years BP, the southern one resulted in two different ages (2,400 and 12,000 years BP), which represent most likely multiple rockfall events. This reflects the currently observable deformation style with unstable blocks in the northern part in between Joasete and Furekamben and no distinct blocks but a high rockfall activity around Ramnanosi in the south. With a relative susceptibility analysis it is concluded that small collapses of blocks along the frontal cliff will be more frequent. Larger collapses of free-standing blocks along the cliff with volumes > 100,000 m3, thus large enough to reach the fjord, cannot be ruled out. A larger collapse involving several million m3 is presently considered of very low likelihood.
Resumo:
Long-range Terrestrial Laser Scanning (TLS) is widely used in studies on rock slope instabilities. TLS point clouds allow the creation of high-resolution digital elevation models for detailed mapping of landslide morphologies and the measurement of the orientation of main discontinuities. Multi-temporal TLS datasets enable the quantification of slope displacements and rockfall volumes. We present three case studies using TLS for the investigation and monitoring of rock slope instabilities in Norway: 1) the analysis of 3D displacement of the Oksfjellet rock slope failure (Troms, northern Norway); 2) the detection and quantification of rockfalls along the sliding surfaces and at the front of the Kvitfjellet rock slope instability (Møre og Romsdal, western Norway); 3) the analysis of discontinuities and rotational movements of an unstable block at Stampa (Sogn og Fjordane, western Norway). These case studies highlight the possibilities but also limitations of TLS in investigating and monitoring unstable rock slopes.
Resumo:
The development of susceptibility maps for debris flows is of primary importance due to population pressure in hazardous zones. However, hazard assessment by processbased modelling at a regional scale is difficult due to the complex nature of the phenomenon, the variability of local controlling factors, and the uncertainty in modelling parameters. A regional assessment must consider a simplified approach that is not highly parameter dependant and that can provide zonation with minimum data requirements. A distributed empirical model has thus been developed for regional susceptibility assessments using essentially a digital elevation model (DEM). The model is called Flow-R for Flow path assessment of gravitational hazards at a Regional scale (available free of charge under www.flow-r.org) and has been successfully applied to different case studies in various countries with variable data quality. It provides a substantial basis for a preliminary susceptibility assessment at a regional scale. The model was also found relevant to assess other natural hazards such as rockfall, snow avalanches and floods. The model allows for automatic source area delineation, given user criteria, and for the assessment of the propagation extent based on various spreading algorithms and simple frictional laws.We developed a new spreading algorithm, an improved version of Holmgren's direction algorithm, that is less sensitive to small variations of the DEM and that is avoiding over-channelization, and so produces more realistic extents. The choices of the datasets and the algorithms are open to the user, which makes it compliant for various applications and dataset availability. Amongst the possible datasets, the DEM is the only one that is really needed for both the source area delineation and the propagation assessment; its quality is of major importance for the results accuracy. We consider a 10m DEM resolution as a good compromise between processing time and quality of results. However, valuable results have still been obtained on the basis of lower quality DEMs with 25m resolution.
Resumo:
Hazard mapping in mountainous areas at the regional scale has greatly changed since the 1990s thanks to improved digital elevation models (DEM). It is now possible to model slope mass movement and floods with a high level of detail in order to improve geomorphologic mapping. We present examples of regional multi-hazard susceptibility mapping through two Swiss case studies, including landslides, rockfall, debris flows, snow avalanches and floods, in addition to several original methods and software tools. The aim of these recent developments is to take advantage of the availability of high resolution DEM (HRDEM) for better mass movement modeling. Our results indicate a good correspondence between inventories of hazardous zones based on historical events and model predictions. This paper demonstrates that by adapting tools and methods issued from modern technologies, it is possible to obtain reliable documents for land planning purposes over large areas.
Resumo:
Numerous rockfalls were detected in the Las Cuevas valley, Argentina, after the 27 February 2010 earthquake in Chile. Live rockfalls were observed during aftershocks of 11 March 2010. Many rockfall source areas coincide with known thrust fault and some areas presented a rockfall activity even after the tremors. Some rockfalls crossed the National Road 7 but no damages to houses or vehicles were reported. This study illustrates how the 27 February 2010 earthquake impacted on unstable slopes in a valley far from the earthquakes epicentre. It is an interesting addition to previous studies on landslides caused by earthquakes because of the high magnitude of the event and of its aftershocks.
Resumo:
Summary Detection, analysis and monitoring of slope movements by high-resolution digital elevation modelsSlope movements, such as rockfalls, rockslides, shallow landslides or debris flows, are frequent in many mountainous areas. These natural hazards endanger the inhabitants and infrastructures making it necessary to assess the hazard and risk caused by these phenomena. This PhD thesis explores various approaches using digital elevation models (DEMs) - and particularly high-resolution DEMs created by aerial or terrestrial laser scanning (TLS) - that contribute to the assessment of slope movement hazard at regional and local scales.The regional detection of areas prone to rockfalls and large rockslides uses different morphologic criteria or geometric instability factors derived from DEMs, i.e. the steepness of the slope, the presence of discontinuities, which enable a sliding mechanism, and the denudation potential. The combination of these factors leads to a map of susceptibility to rockfall initiation that is in good agreement with field studies as shown with the example of the Little Mill Campground area (Utah, USA). Another case study in the Illgraben catchment in the Swiss Alps highlighted the link between areas with a high denudation potential and actual rockfall areas.Techniques for a detailed analysis and characterization of slope movements based on high-resolution DEMs have been developed for specific, localized sites, i.e. ancient slide scars, present active instabilities or potential slope instabilities. The analysis of the site's characteristics mainly focuses on rock slopes and includes structural analyses (orientation of discontinuities); estimation of spacing, persistence and roughness of discontinuities; failure mechanisms based on the structural setting; and volume calculations. For the volume estimation a new 3D approach was tested to reconstruct the topography before a landslide or to construct the basal failure surface of an active or potential instability. The rockslides at Åknes, Tafjord and Rundefjellet in western Norway were principally used as study sites to develop and test the different techniques.The monitoring of slope instabilities investigated in this PhD thesis is essentially based on multitemporal (or sequential) high-resolution DEMs, in particular sequential point clouds acquired by TLS. The changes in the topography due to slope movements can be detected and quantified by sequential TLS datasets, notably by shortest distance comparisons revealing the 3D slope movements over the entire region of interest. A detailed analysis of rock slope movements is based on the affine transformation between an initial and a final state of the rock mass and its decomposition into translational and rotational movements. Monitoring using TLS was very successful on the fast-moving Eiger rockslide in the Swiss Alps, but also on the active rockslides of Åknes and Nordnesfjellet (northern Norway). One of the main achievements on the Eiger and Aknes rockslides is to combine the site's morphology and structural setting with the measured slope movements to produce coherent instability models. Both case studies also highlighted a strong control of the structures in the rock mass on the sliding directions. TLS was also used to monitor slope movements in soils, such as landslides in sensitive clays in Québec (Canada), shallow landslides on river banks (Sorge River, Switzerland) and a debris flow channel (Illgraben).The PhD thesis underlines the broad uses of high-resolution DEMs and especially of TLS in the detection, analysis and monitoring of slope movements. Future studies should explore in more depth the different techniques and approaches developed and used in this PhD, improve them and better integrate the findings in current hazard assessment practices and in slope stability models.Résumé Détection, analyse et surveillance de mouvements de versant à l'aide de modèles numériques de terrain de haute résolutionDes mouvements de versant, tels que des chutes de blocs, glissements de terrain ou laves torrentielles, sont fréquents dans des régions montagneuses et mettent en danger les habitants et les infrastructures ce qui rend nécessaire d'évaluer le danger et le risque causé par ces phénomènes naturels. Ce travail de thèse explore diverses approches qui utilisent des modèles numériques de terrain (MNT) et surtout des MNT de haute résolution créés par scanner laser terrestre (SLT) ou aérien - et qui contribuent à l'évaluation du danger de mouvements de versant à l'échelle régionale et locale.La détection régionale de zones propices aux chutes de blocs ou aux éboulements utilise plusieurs critères morphologiques dérivés d'un MNT, tels que la pente, la présence de discontinuités qui permettent un mécanisme de glissement ou le potentiel de dénudation. La combinaison de ces facteurs d'instabilité mène vers une carte de susceptibilité aux chutes de blocs qui est en accord avec des travaux de terrain comme démontré avec l'exemple du Little Mill Campground (Utah, États-Unis). Un autre cas d'étude - l'Illgraben dans les Alpes valaisannes - a mis en évidence le lien entre les zones à fort potentiel de dénudation et les sources effectives de chutes de blocs et d'éboulements.Des techniques pour l'analyse et la caractérisation détaillée de mouvements de versant basées sur des MNT de haute résolution ont été développées pour des sites spécifiques et localisés, comme par exemple des cicatrices d'anciens éboulements et des instabilités actives ou potentielles. Cette analyse se focalise principalement sur des pentes rocheuses et comprend l'analyse structurale (orientation des discontinuités); l'estimation de l'espacement, la persistance et la rugosité des discontinuités; l'établissement des mécanismes de rupture; et le calcul de volumes. Pour cela une nouvelle approche a été testée en rétablissant la topographie antérieure au glissement ou en construisant la surface de rupture d'instabilités actuelles ou potentielles. Les glissements rocheux d'Åknes, Tafjord et Rundefjellet en Norvège ont été surtout utilisés comme cas d'étude pour développer et tester les diverses approches. La surveillance d'instabilités de versant effectuée dans cette thèse de doctorat est essentiellement basée sur des MNT de haute résolution multi-temporels (ou séquentiels), en particulier des nuages de points séquentiels acquis par SLT. Les changements topographiques dus aux mouvements de versant peuvent être détectés et quantifiés sur l'ensemble d'un glissement, notamment par comparaisons des distances les plus courtes entre deux nuages de points. L'analyse détaillée des mouvements est basée sur la transformation affine entre la position initiale et finale d'un bloc et sa décomposition en mouvements translationnels et rotationnels. La surveillance par SLT a démontré son potentiel avec l'effondrement d'un pan de l'Eiger dans les Alpes suisses, mais aussi aux glissements rocheux d'Aknes et Nordnesfjellet en Norvège. Une des principales avancées à l'Eiger et à Aknes est la création de modèles d'instabilité cohérents en combinant la morphologie et l'agencement structural des sites avec les mesures de déplacements. Ces deux cas d'étude ont aussi démontré le fort contrôle des structures existantes dans le massif rocheux sur les directions de glissement. Le SLT a également été utilisé pour surveiller des glissements dans des terrains meubles comme dans les argiles sensibles au Québec (Canada), sur les berges de la rivière Sorge en Suisse et dans le chenal à laves torrentielles de l'Illgraben.Cette thèse de doctorat souligne le vaste champ d'applications des MNT de haute résolution et particulièrement du SLT dans la détection, l'analyse et la surveillance des mouvements de versant. Des études futures devraient explorer plus en profondeur les différentes techniques et approches développées, les améliorer et mieux les intégrer dans des pratiques actuelles d'analyse de danger et surtout dans la modélisation de stabilité des versants.
Resumo:
Dans le contexte d'un climat de plus en plus chaud, une étude « géosystémique » de la répartition du pergélisol dans l'ensemble d'un versant périglaciaire alpin, de la paroi rocheuse jusqu'au glacier rocheux, s'avère primordiale. S'insérant dans cette problématique, ce travail de thèse vise comme objectif général l'étude des versants d'éboulis situés à l'intérieur de la ceinture du pergélisol discontinu selon deux volets de recherche différents : une étude de la stratigraphie et de la répartition du pergélisol dans les éboulis de haute altitude et des processus qui lui sont associés ; une reconstitution de l'histoire paléoenvironnementale du domaine périglaciaire alpin pendant le Tardiglaciaire et l'Holocène. La stratigraphie et la répartition spatiale du pergélisol a été étudiée dans cinq éboulis des Alpes Valaisannes (Suisse), dont trois ont fait l'objet de forages profonds, grâce à la prospection géophysique de détail effectuée à l'aide de méthodes thermiques, de résistivité, sismiques et nucléaires. Les mesures effectuées ont permis de mettre en évidence que, dans les cinq éboulis étudiés, la répartition du pergélisol est discontinue et aucun des versants n'est intégralement occupé par du pergélisol. En particulier, il a été possible de prouver de manière directe que, dans un éboulis, le pergélisol est présent dans les parties inférieures du versant et absent dans les parties supérieures. Trois facteurs de contrôle principaux de la répartition du pergélisol déterminée au sein des éboulis étudiés ont été individualisés, pouvant agir seuls ou de manière combinée : la ventilation ascendante, l'augmentation de la granulométrie en direction de l'aval et la redistribution de la neige par le vent et les avalanches. Parmi ceux-ci, la relation ventilation-granulométrie semble être le facteur de contrôle principal permettant d'expliquer la présence de pergélisol dans les parties inférieures d'un éboulis et son absence dans les parties supérieures. Enfin, l'analyse de la structure des éboulis périglaciaires de haute altitude a permis de montrer que la stratigraphie du pergélisol peut être un élément important pour l'interprétation de la signification paléoclimatique de ce type de formes. Pour le deuxième volet de la recherche, grâce aux datations relatives effectuées à l'aide de l'utilisation conjointe de la méthode paléogéographique et du marteau de Schmidt, il a été possible de définir la chrono-stratigraphie du retrait glaciaire et du développement des glaciers rocheux et des versants d'éboulis des quatre régions des Alpes suisses étudiées (régions du Mont Gelé - Mont Fort, des Fontanesses et de Chamosentse, dans les Alpes Valaisannes, et Massif de la Cima di Gana Bianca, dans les Alpes Tessinoises). La compilation de toutes les datations effectuées a permis de montrer que la plupart des glaciers rocheux actifs étudiés se seraient développés soit juste avant et/ou pendant l'Optimum Climatique Holocène de 9.5-6.3 ka cal BP, soit au plus tard juste après cet évènement climatique majeur du dernier interglaciaire. Parmi les glaciers rocheux fossiles datés, la plupart aurait commencé à se former dans la deuxième moitié du Tardiglaciaire et se serait inactivé dans la première partie de l'Optimum Climatique Holocène. Pour les éboulis étudiés, les datations effectuées ont permis d'observer que leur surface date de la période entre le Boréal et l'Atlantique récent, indiquant que les taux d'éboulisation après la fin de l'Optimum Climatique Holocène ont dû être faibles, et que l'intervalle entre l'âge maximal et l'âge minimal est dans la plupart des cas relativement court (4-6 millénaires), indiquant que les taux d'éboulisation durant la période de formation des éboulis ont dû être importants. Grâce au calcul des taux d'érosion des parois rocheuses sur la base du volume de matériaux rocheux pour quatre des éboulis étudiés, il a été possible mettre en évidence l'existence d'une « éboulisation parapériglaciaire » liée à la dégradation du pergélisol dans les parois rocheuses, fonctionnant principalement durant les périodes de réchauffement climatique rapide comme cela a été le cas au début du Bølling, du Préboréal à la fin de l'Atlantique récent et, peut-être, à partir des années 1980. - In the context of a warmer climate, a « geosystemical » study of the permafrost distribution in a whole alpine periglacial hillslope, from the rockwall to the rockglacier, is of great importance. With respect to this problem, the general objective of this PhD thesis is the global study of talus slopes located within the alpine periglacial belt following two different research axes: the analysis of the internal structure and of the permafrost distribution of high altitude talus slopes and of the related processes; the reconstruction of the palaeoenvironmental history of the alpine periglacial belt during the Lateglacial and the Holocene. The stratigraphy and the permafrost distribution were studied in five talus slopes of the Valais Alps (Switzerland) with the analysis of borehole data (on three of the five talus slopes) and other methods of permafrost prospecting: Electrical Resistivity Tomography (ERT), Refraction Seismic Tomography (RST) and nuclear well logging. The collected data shows that, in all of the studied talus slopes, permafrost distribution is discontinuous and that neither of the hillslopes is integrally characterised by permafrost. In particular, this data proves by direct investigations that, in talus slopes, permafrost is present in the lower parts of the hillslope, whereas it is absent in the upper parts. Permafrost distribution in alpine talus slopes is depending of the combination of almost three controlling factors, whose respective importance is variable: the chimney effect, the increase of grain size downslope and the redistribution of snow by avalanches. Depending on the size of the talus and on topographical and geomorphological heterogeneities, various cases are possible: one dominant controlling factor or the combination of various factors. Nevertheless, it would be an error to consider each controlling factor independently, without considering their relationships. Between these controlling factors, the relationship chimney effect/grain size seems to be the most important factor controlling the presence of permafrost in the lowest part of periglacial talus slopes, and its absence in the upper parts. Finally, the analysis of the talus structure shows that the permafrost stratigraphy may be an important element of interpretation of the palaeoclimatic significance of an alpine talus slope. The second research axe focused on the establishment of a chronology of the Lateglacial glacier retreat and the dating of rockglaciers and talus slopes development in four studied regions of the Swiss Alps (Mont Gelé - Mont Fort, Fontanesses and Chamosentse regions, in the Valais Alps, and the Cima di Gana Bianca Massif, in the Ticino Alps). The compilation of the dates acquired through the combination of the palaeogeographical method and of the Schmidt hammer indicates that most of the investigated active rockglaciers started to evolve during the early phases of the Holocene or, at the latest, after the early-to-mid Holocene Climatic Optimum (ending around 6.3 ka cal BP). For the dated relict rockglaciers, most of them started to evolve in the second half of the Lateglacial, and probably became inactive at the beginning of the Holocene Climatic Optimum. For the investigated talus slopes, the relative dating carried out allowed to show that their surface date from the period included between the Boreal and the end of the Atlantic, pointing out that the rockwall retreat after the end of the Holocene Climatic Optimum was weak, and that the interval between maximal and minimal ages is in most cases relatively short (4-6 millennia). Therefore, the rockwall retreat during the development period of the talus slopes must has been considerable. Thanks to the calculation of rockwall erosion rates based on the volume of talus accumulations for four of the investigated hillslopes, it was possible to find evidences of the existence of "paraperiglacial rockfall phases" related to the permafrost degradation in rockwalls. These phases coincide with rapid climate warming periods, as at the beginning of the Bølling, during the Preboreal or, maybe, since 1980.
Resumo:
We present the application of terrestrial laser scanning (TLS) for the monitoring and characterization of an active landslide area in Val Canaria (Ticino, Southern Swiss Alps). At catchment scale, the study area is affected by a large Deep Seated Gravitational Slope Deformation (DSGSD) area presenting, in the lower boundary, several retrogressive landslides active since the 1990s. Due to its frequent landslide events this area was periodically monitored by TLS since 2006. Periodic acquisitions provided new information on 3D displacements at the bottom of slope and the detection of centimetre to decimetre level scale changes (e.g. rockfall and pre-failure deformations). In October 2009, a major slope collapse occured at the bottom of the most unstable area. Based on the comparison between TLS data before and after the collapse, we carried out a detailed failure mechanism analysis and volume calculation.
Resumo:
Integrated in a wide research assessing destabilizing and triggering factors to model cliff dynamic along the Dieppe's shoreline in High Normandy, this study aims at testing boat-based mobile LiDAR capabilities by scanning 3D point clouds of the unstable coastal cliffs. Two acquisition campaigns were performed in September 2012 and September 2013, scanning (1) a 30-km-long shoreline and (2) the same test cliffs in different environmental conditions and device settings. The potentials of collected data for 3D modelling, change detection and landslide monitoring were afterward assessed. By scanning during favourable meteorological and marine conditions and close to the coast, mobile LiDAR devices are able to quickly scan a long shoreline with median point spacing up to 10cm. The acquired data are then sufficiently detailed to map geomorphological features smaller than 0.5m2. Furthermore, our capability to detect rockfalls and erosion deposits (>m3) is confirmed, since using the classical approach of computing differences between sequential acquisitions reveals many cliff collapses between Pourville and Quiberville and only sparse changes between Dieppe and Belleville-sur-Mer. These different change rates result from different rockfall susceptibilities. Finally, we also confirmed the capability of the boat-based mobile LiDAR technique to monitor single large changes, characterizing the Dieppe landslide geometry with two main active scarps, retrogression up to 40m and about 100,000m3 of eroded materials.
Resumo:
Landslide processes can have direct and indirect consequences affecting human lives and activities. In order to improve landslide risk management procedures, this PhD thesis aims to investigate capabilities of active LiDAR and RaDAR sensors for landslides detection and characterization at regional scales, spatial risk assessment over large areas and slope instabilities monitoring and modelling at site-specific scales. At regional scales, we first demonstrated recent boat-based mobile LiDAR capabilities to model topography of the Normand coastal cliffs. By comparing annual acquisitions, we validated as well our approach to detect surface changes and thus map rock collapses, landslides and toe erosions affecting the shoreline at a county scale. Then, we applied a spaceborne InSAR approach to detect large slope instabilities in Argentina. Based on both phase and amplitude RaDAR signals, we extracted decisive information to detect, characterize and monitor two unknown extremely slow landslides, and to quantify water level variations of an involved close dam reservoir. Finally, advanced investigations on fragmental rockfall risk assessment were conducted along roads of the Val de Bagnes, by improving approaches of the Slope Angle Distribution and the FlowR software. Therefore, both rock-mass-failure susceptibilities and relative frequencies of block propagations were assessed and rockfall hazard and risk maps could be established at the valley scale. At slope-specific scales, in the Swiss Alps, we first integrated ground-based InSAR and terrestrial LiDAR acquisitions to map, monitor and model the Perraire rock slope deformation. By interpreting both methods individually and originally integrated as well, we therefore delimited the rockslide borders, computed volumes and highlighted non-uniform translational displacements along a wedge failure surface. Finally, we studied specific requirements and practical issues experimented on early warning systems of some of the most studied landslides worldwide. As a result, we highlighted valuable key recommendations to design new reliable systems; in addition, we also underlined conceptual issues that must be solved to improve current procedures. To sum up, the diversity of experimented situations brought an extensive experience that revealed the potential and limitations of both methods and highlighted as well the necessity of their complementary and integrated uses.