218 resultados para Right lateral orbital gyrus
Resumo:
Resection of midline skull base lesions involve approaches needing extensive neurovascular manipulation. Transnasal endoscopic approach (TEA) is minimally invasive and ideal for certain selected lesions of the anterior skull base. A thorough knowledge of endonasal endoscopic anatomy is essential to be well versed with its surgical applications and this is possible only by dedicated cadaveric dissections. The goal in this study was to understand endoscopic anatomy of the orbital apex, petrous apex and the pterygopalatine fossa. Six cadaveric heads (3 injected and 3 non injected) and 12 sides, were dissected using a TEA outlining systematically, the steps of surgical dissection and the landmarks encountered. Dissection done by the "2 nostril, 4 hands" technique, allows better transnasal instrumentation with two surgeons working in unison with each other. The main surgical landmarks for the orbital apex are the carotid artery protuberance in the lateral sphenoid wall, optic nerve canal, lateral optico-carotid recess, optic strut and the V2 nerve. Orbital apex includes structures passing through the superior and inferior orbital fissure and the optic nerve canal. Vidian nerve canal and the V2 are important landmarks for the petrous apex. Identification of the sphenopalatine artery, V2 and foramen rotundum are important during dissection of the pterygopalatine fossa. In conclusion, the major potential advantage of TEA to the skull base is that it provides a direct anatomical route to the lesion without traversing any major neurovascular structures, as against the open transcranial approaches which involve more neurovascular manipulation and brain retraction. Obviously, these approaches require close cooperation and collaboration between otorhinolaryngologists and neurosurgeons.
Resumo:
OBJECTIVE: To assess the impact of liver hypertrophy of the future liver remnant volume (FLR) induced by preoperative portal vein embolization (PVE) on the immediate postoperative complications after a standardized major liver resection. SUMMARY BACKGROUND DATA: PVE is usually indicated when FLR is estimated to be too small for major liver resection. However, few data exist regarding the exact quantification of sufficient minimal functional hepatic volume required to avoid postoperative complications in both patients with or without chronic liver disease. METHODS: All consecutive patients in whom an elective right hepatectomy was feasible and who fulfilled the inclusion and exclusion criteria between 1998 and 2000 were assigned to have alternatively either immediate surgery or surgery after PVE. Among 55 patients (25 liver metastases, 2 cholangiocarcinoma, and 28 hepatocellular carcinoma), 28 underwent right hepatectomy after PVE and 27 underwent immediate surgery. Twenty-eight patients had chronic liver disease. FLR and estimated rate of functional future liver remnant (%FFLR) volumes were assessed by computed tomography. RESULTS: The mean increase of FLR and %FFLR 4 to 8 weeks after PVE were respectively 44 +/- 19% and 16 +/- 7% for patients with normal liver and 35 +/- 28% and 9 +/- 3% for those with chronic liver disease. All patients with normal liver and 86% with chronic liver disease experienced hypertrophy after PVE. The postoperative course of patients with normal liver who underwent PVE before right hepatectomy was similar to those with immediate surgery. In contrast, PVE in patients with chronic liver disease significantly decreased the incidence of postoperative complications as well as the intensive care unit stay and total hospital stay after right hepatectomy. CONCLUSIONS: Before elective right hepatectomy, the hypertrophy of FLR induced by PVE had no beneficial effect on the postoperative course in patients with normal liver. In contrast, in patients with chronic liver disease, the hypertrophy of the FLR induced by PVE decreased significantly the rate of postoperative complications.
Resumo:
Introduction: Several scores are commonly used to evaluate patients' postoperative satisfaction after lateral ankle ligament repair, including: AOFAS, FAAM, CAIT and CAIS. Comparing published studies in the literature is difficult, as the same patient can have markedly different results depending on which scoring system is used. The current study aims to address this gap in the literature by developing a system to compare these tests, to allow better analysis and comparison of published studies. Patients and methods: This is a retrospective cohort study of 47 patients following lateral ankle ligament repair using a modified Broström-Gould technique. All patients were operated between 2005 and 2010 by a single surgeon and followed the same post operative rehabilitation protocol. Six patients were excluded from the study because of concomitant surgery. Patients were assessed by an independent observer. We used the Pearson correlation coefficient to analyse the concordance of the scores, as well as scatter plots to assess the linear relationship between them. Results: A linear distribution between the scores was found when the results were analysed using scatter plots. We were thus able to use the Pearson correlation coefficient to evaluate the relationship between each of the different postoperative scores. The correlation was found to be above 0.5 in all cases except for the comparison between the CAIT and the FAAM for the activities of daily living (0.39). We were, therefore, able to compare the results obtained and assess the relative concordance of the scoring systems. The results showed that the more specific the scale is, the worst the score is and inversely. So the CAIT and the CAIS appeared to be more severe than the AOFAS and the FAAM measuring the activities of daily living. The sports subscale of the FAAM demonstrated intermediate results. Conclusion: This study outlines a system to compare different postoperative scores commonly used to evaluate outcome after ankle stabilization surgery. The impact of this study is that it makes comparison of published studies easier, even though they use a variety of different clinical scores, thus facilitating better outcome analysis of operative techniques.
Resumo:
Auditory spatial functions, including the ability to discriminate between the positions of nearby sound sources, are subserved by a large temporo-parieto-frontal network. With the aim of determining whether and when the parietal contribution is critical for auditory spatial discrimination, we applied single pulse transcranial magnetic stimulation on the right parietal cortex 20, 80, 90 and 150 ms post-stimulus onset while participants completed a two-alternative forced choice auditory spatial discrimination task in the left or right hemispace. Our results reveal that transient TMS disruption of right parietal activity impairs spatial discrimination when applied at 20 ms post-stimulus onset for sounds presented in the left (controlateral) hemispace and at 80 ms for sounds presented in the right hemispace. We interpret our finding in terms of a critical role for controlateral temporo-parietal cortices over initial stages of the building-up of auditory spatial representation and for a right hemispheric specialization in integrating the whole auditory space over subsequent, higher-order processing stages.
Resumo:
PURPOSE: Orbital wall fracture may occur during endoscopic sinus surgery, resulting in oculomotor disorders. We report the management of four cases presenting with this surgical complication. METHODS: A non-comparative observational retrospective study was carried out on four patients presenting with diplopia after endoscopic ethmoidal sinus surgery. All patients underwent full ophthalmologic and orthoptic examination as well as orbital imaging. RESULTS: All four patients presented with diplopia secondary to a medial rectus lesion confirmed by orbital imaging. A large horizontal deviation as well as limitation of adduction was present in all cases. Surgical management consisted of conventional recession-resection procedures in three cases and muscle transposition in one patient. A useful field of binocular single vision was restored in two of the four patients. CONCLUSION: Orbital injury may occur during endoscopic sinus surgery and cause diplopia, usually secondary to medial rectus involvement due to the proximity of this muscle to the lamina papyracea of the ethmoid bone. Surgical management is based on orbital imaging, duration of the lesion, evaluation of anterior segment vasculature, results of forced duction testing and intraoperative findings. In most cases, treatment is aimed at the symptoms rather than the cause, and the functional prognosis remains guarded.
Resumo:
The primary auditory cortex (PAC) is central to human auditory abilities, yet its location in the brain remains unclear. We measured the two largest tonotopic subfields of PAC (hA1 and hR) using high-resolution functional MRI at 7 T relative to the underlying anatomy of Heschl's gyrus (HG) in 10 individual human subjects. The data reveals a clear anatomical-functional relationship that, for the first time, indicates the location of PAC across the range of common morphological variants of HG (single gyri, partial duplications, and complete duplications). In 20/20 individual hemispheres, two primary mirror-symmetric tonotopic maps were clearly observed with gradients perpendicular to HG. PAC spanned both divisions of HG in cases of partial and complete duplications (11/20 hemispheres), not only the anterior division as commonly assumed. Specifically, the central union of the two primary maps (the hA1-R border) was consistently centered on the full Heschl's structure: on the gyral crown of single HGs and within the sulcal divide of duplicated HGs. The anatomical-functional variants of PAC appear to be part of a continuum, rather than distinct subtypes. These findings significantly revise HG as a marker for human PAC and suggest that tonotopic maps may have shaped HG during human evolution. Tonotopic mappings were based on only 16 min of fMRI data acquisition, so these methods can be used as an initial mapping step in future experiments designed to probe the function of specific auditory fields.
Resumo:
Abstract Right hemispheric stroke aphasia (RHSA) rarely occurs in right- or left-handed patients with their language representation in right hemisphere (RH). For right-handers, the term crossed aphasia is used. Single cases, multiple cases reports, and reviews suggest more variable anatomo-clinical correlations. We included retrospectively from our stroke data bank 16 patients (right- and left-handed, and ambidextrous) with aphasia after a single first-ever ischemic RH stroke. A control group was composed of 25 successive patients with left hemispheric stroke and aphasia (LHSA). For each patient, we analyzed four modalities of language (spontaneous fluency, naming, repetition, and comprehension) and recorded eventual impairment: (1) on admission (hyperacute) and (2) between day 3 and 14 (acute). Lesion volume and location as measured on computed tomography (CT) and magnetic resonance imaging (MRI) were transformed into Talairach stereotaxic space. Nonparametric statistics were used to compare impaired/nonimpaired patients. Comprehension and repetition were less frequently impaired after RHSA (respectively, 56% and 50%) than after LHSA (respectively, 84% and 80%, P = 0.05 and 0.04) only at hyperacute phase. Among RHSA, fewer left-handers/ambidextrous than right-handers had comprehension disorders at second evaluation (P = 0.013). Mean infarct size was similar in RHSA and LHSA with less posterior RHSA lesions (caudal to the posterior commissure). Comprehension and repetition impairments were more often associated with anterior lesions in RHSA (Fisher's exact test, P < 0.05). Despite the small size of the cohort, our findings suggest increased atypical anatomo-functional correlations of RH language representation, particularly in non-right-handed patients. Rapport de synthèse : Des aphasies secondaires à un accident vasculaire ischémique cérébral (AVC) hémisphérique droit sont rarement rencontrées chez des patients droitiers ou gauchers avec une représentation du langage dans l'hémisphère droit. Chez les droitiers, on parle d'aphasie croisée. Plusieurs études sur le sujet ont suggéré des corrélations anatomocliniques plus variables. Dans notre étude, nous avons inclus rétrospectivement, à partir d'une base de données de patients avec un AVC, seize patients (droitiers, gauchers et ambidextres) souffrant d'une aphasie suite à un premier et unique AVC ischémique hémisphérique droit. Un groupe contrôle est composé de vingt-cinq patients successifs avec une aphasie suite à un AVC ischémique hémisphérique gauche. Pour chaque patient, nous avons analysé quatre modalités de langage, à savoir la fluence spontanée, la dénomination, la répétition et la compréhension et leur éventuelle atteinte à deux moments distincts : 1) à l'admission (phase hyperaiguë) et 2) entre le 3e et le 14e jour (phase aiguë). Le volume et la localisation de la lésion mesurés, soit sur un CT-scanner soit sur une imagerie par résonance magnétique cérébrale, ont été analysés à l'aide de l'échelle stéréotaxique de Talairach. Des statistiques non paramétriques ont été utilisées pour comparer les patients atteints et non atteints. . La compréhension et la répétition étaient moins souvent atteintes, seulement en phase hyperaiguë, après une aphasie suite à un AVC hémisphérique droit (resp. 56% et 50%) plutôt que gauche (resp. 84 % et 80%, p= 0.05 et 0.04). Parmi les aphasies suite à un AVC ischémique hémisphérique droit, moins de gauchers et d'ambidextres que de droitiers avaient des troubles de la compréhension lors de la seconde évaluation (p=0.013}. La .taille moyenne de la zone infarcie était semblable entre les aphasies droites et gauches, avec moins de lésions postérieures (caudale à la commissure postérieure) lors des aphasies droites. Les troubles de la répétition et de la compréhension étaient plus souvent associés à des lésions antérieures lors d'aphasie droite. (Fischer's exact test, p>0.05). Malgré la petite taille de notre cohorte de patients, ces résultats suggèrent une augmentation des corrélations anatomocliniques atypiques lors d'une représentation du langage dans l'hémisphère droit, surtout chez les patients non droitiers.
Resumo:
We report a case of acute fracture of both sesamoids of the great toe in an athlete. The fractures healed uneventfully after non-surgical treatment.
Resumo:
BACKGROUND: Elderly schizophrenia patients frequently develop cognitive impairment of unclear etiology. Magnetic resonance imaging (MRI) studies revealed brain structural abnormalities, but the pattern of cortical gray matter (GM) volume and its relationship with cognitive and behavioral symptoms are unknown. METHODS: Magnetic resonance scans were taken from elderly schizophrenia patients (n = 20, age 67 +/- 6 SD, Mini-Mental State Examination [MMSE] 23 +/- 4), Alzheimer's disease (AD) patients (n = 20, age 73 +/- 9, MMSE 22 +/- 4), and healthy elders (n = 20, age 73 +/- 8, MMSE 29 +/- 1). Patients were assessed with a comprehensive neuropsychological and behavioral battery. Cortical pattern matching and a region-of-interest analysis, based on Brodmann areas (BAs), were used to map three-dimensional (3-D) profiles of differences in patterns of gray matter volume among groups. RESULTS: Schizophrenia patients had 10% and 11% lower total left and right GM volume than healthy elders (p < .001) and 7% and 5% more than AD patients (p = .06 and ns). Regions that had both significantly less gray matter than control subjects and gray matter volume as low as AD mapped to the cingulate gyrus and orbitofrontal cortex (BA 30, 23, 24, 32, 25, 11). The strongest correlate of gray matter volume in elderly schizophrenia patients, although nonsignificant, was the positive symptom subscale of the Positive and Negative Syndrome Scale, mapping to the right anterior cingulate area (r = .42, p = .06). CONCLUSIONS: The orbitofrontal/cingulate region had low gray matter volume in elderly schizophrenia patients. Neither cognitive impairment nor psychiatric symptoms were significantly associated with structural differences, even if positive symptoms tended to be associated with increased gray matter volume in this area.
Resumo:
Multisensory interactions are a fundamental feature of brain organization. Principles governing multisensory processing have been established by varying stimulus location, timing and efficacy independently. Determining whether and how such principles operate when stimuli vary dynamically in their perceived distance (as when looming/receding) provides an assay for synergy among the above principles and also means for linking multisensory interactions between rudimentary stimuli with higher-order signals used for communication and motor planning. Human participants indicated movement of looming or receding versus static stimuli that were visual, auditory, or multisensory combinations while 160-channel EEG was recorded. Multivariate EEG analyses and distributed source estimations were performed. Nonlinear interactions between looming signals were observed at early poststimulus latencies (∼75 ms) in analyses of voltage waveforms, global field power, and source estimations. These looming-specific interactions positively correlated with reaction time facilitation, providing direct links between neural and performance metrics of multisensory integration. Statistical analyses of source estimations identified looming-specific interactions within the right claustrum/insula extending inferiorly into the amygdala and also within the bilateral cuneus extending into the inferior and lateral occipital cortices. Multisensory effects common to all conditions, regardless of perceived distance and congruity, followed (∼115 ms) and manifested as faster transition between temporally stable brain networks (vs summed responses to unisensory conditions). We demonstrate the early-latency, synergistic interplay between existing principles of multisensory interactions. Such findings change the manner in which to model multisensory interactions at neural and behavioral/perceptual levels. We also provide neurophysiologic backing for the notion that looming signals receive preferential treatment during perception.
Resumo:
For economic reasons, the tendency in western communities is to simplify the investigations for a given pathology. This case is typically the one where some more money has to be invested to achieve the correct diagnosis.
Resumo:
The aim of the present study was to characterize the discharge properties of single neurons in the dorsal nucleus of the lateral lemniscus (DNLL) of the rat. In the absence of acoustic stimulation, two types of spontaneous discharge patterns were observed: units tended to fire in a bursting or in a nonbursting mode. The distribution of units in the DNLL based on spontaneous firing rate followed a rostrocaudal gradient: units with high spontaneous rates were most commonly located in the rostral part of the DNLL, whereas in the caudal part units had lower spontaneous discharge rates. The most common response pattern of DNLL units to 200 ms binaural noise bursts contained a prominent onset response followed by a lower but steady-state response and an inhibitory response in the early-off period. Thresholds of response to noise bursts were on average higher for DNLL units than for units recorded in the inferior colliculus under the same experimental conditions. The DNLL units were arranged according to a mediolateral sensitivity gradient with the lowest threshold units in the most lateral part of the nucleus. In the rat, as in other mammals, the most common DNLL binaural input type was an excitatory response to contralateral ear stimulation and inhibitory response to ipsilateral ear stimulation (EI type). Pure tone bursts were in general a more effective stimulus compared to noise bursts. Best frequency (BF) was established for 97 DNLL units and plotted according to their spatial location. The DNLL exhibits a loose tonotopic organization, where there is a concentric pattern with high BF units located in the most dorsal and ventral parts of the DNLL and lower BF units in the middle part of the nucleus.