20 resultados para Redes Definidas por Software
Resumo:
SUMMARY: We present a tool designed for visualization of large-scale genetic and genomic data exemplified by results from genome-wide association studies. This software provides an integrated framework to facilitate the interpretation of SNP association studies in genomic context. Gene annotations can be retrieved from Ensembl, linkage disequilibrium data downloaded from HapMap and custom data imported in BED or WIG format. AssociationViewer integrates functionalities that enable the aggregation or intersection of data tracks. It implements an efficient cache system and allows the display of several, very large-scale genomic datasets. AVAILABILITY: The Java code for AssociationViewer is distributed under the GNU General Public Licence and has been tested on Microsoft Windows XP, MacOSX and GNU/Linux operating systems. It is available from the SourceForge repository. This also includes Java webstart, documentation and example datafiles.
Resumo:
Background: TIDratio indirectly reflects myocardial ischemia and is correlated with cardiacprognosis. We aimed at comparing the influence of three different softwarepackages for the assessment of TID using Rb-82 cardiac PET/CT. Methods: Intotal, data of 30 patients were used based on normal myocardial perfusion(SSS<3 and SRS<3) and stress myocardial blood flow 2mL/min/g)assessed by Rb-82 cardiac PET/CT. After reconstruction using 2D OSEM (2Iterations, 28 subsets), 3-D filtering (Butterworth, order=10, ωc=0.5), data were automatically processed, and then manually processed fordefining identical basal and apical limits on both stress and rest images.TIDratio were determined with Myometrix®, ECToolbox® and QGS®software packages. Comparisons used ANOVA, Student t-tests and Lin concordancetest (ρc). Results: All of the 90 processings were successfullyperformed. TID ratio were not statistically different between software packageswhen data were processed automatically (P=0.2) or manually (P=0.17). There was a slight, butsignificant relative overestimation of TID with automatic processing incomparison to manual processing using ECToolbox® (1.07 ± 0.13 vs 1.0± 0.13, P=0.001)and Myometrix® (1.07 ± 0.15 vs 1.01 ± 0.11, P=0.003) but not using QGS®(1.02 ±0.12 vs 1.05 ± 0.11, P=0.16). The best concordance was achieved between ECToolbox®and Myometrix® manual (ρc=0.67) processing.Conclusion: Using automatic or manual mode TID estimation was not significantlyinfluenced by software type. Using Myometrix® or ECToolbox®TID was significantly different between automatic and manual processing, butnot using QGS®. Software package should be account for when definingTID normal reference limits, as well as when used in multicenter studies. QGS®software seemed to be the most operator-independent software package, whileECToolbox® and Myometrix® produced the closest results.
Resumo:
The aim of this study was to determine the effect of using video analysis software on the interrater reliability of visual assessments of gait videos in children with cerebral palsy. Two clinicians viewed the same random selection of 20 sagittal and frontal video recordings of 12 children with cerebral palsy routinely acquired during outpatient rehabilitation clinics. Both observers rated these videos in a random sequence for each lower limb using the Observational Gait Scale, once with standard video software and another with video analysis software (Dartfish(®)) which can perform angle and timing measurements. The video analysis software improved interrater agreement, measured by weighted Cohen's kappas, for the total score (κ 0.778→0.809) and all of the items that required angle and/or timing measurements (knee position mid-stance κ 0.344→0.591; hindfoot position mid-stance κ 0.160→0.346; foot contact mid-stance κ 0.700→0.854; timing of heel rise κ 0.769→0.835). The use of video analysis software is an efficient approach to improve the reliability of visual video assessments.
Resumo:
Introduction: Therapeutic drug monitoring (TDM) aims at optimizing treatment by individualizing dosage regimen based on measurement of blood concentrations. Maintaining concentrations within a target range requires pharmacokinetic and clinical capabilities. Bayesian calculation represents a gold standard in TDM approach but requires computing assistance. In the last decades computer programs have been developed to assist clinicians in this assignment. The aim of this benchmarking was to assess and compare computer tools designed to support TDM clinical activities.¦Method: Literature and Internet search was performed to identify software. All programs were tested on common personal computer. Each program was scored against a standardized grid covering pharmacokinetic relevance, user-friendliness, computing aspects, interfacing, and storage. A weighting factor was applied to each criterion of the grid to consider its relative importance. To assess the robustness of the software, six representative clinical vignettes were also processed through all of them.¦Results: 12 software tools were identified, tested and ranked. It represents a comprehensive review of the available software's characteristics. Numbers of drugs handled vary widely and 8 programs offer the ability to the user to add its own drug model. 10 computer programs are able to compute Bayesian dosage adaptation based on a blood concentration (a posteriori adjustment) while 9 are also able to suggest a priori dosage regimen (prior to any blood concentration measurement), based on individual patient covariates, such as age, gender, weight. Among those applying Bayesian analysis, one uses the non-parametric approach. The top 2 software emerging from this benchmark are MwPharm and TCIWorks. Other programs evaluated have also a good potential but are less sophisticated (e.g. in terms of storage or report generation) or less user-friendly.¦Conclusion: Whereas 2 integrated programs are at the top of the ranked listed, such complex tools would possibly not fit all institutions, and each software tool must be regarded with respect to individual needs of hospitals or clinicians. Interest in computing tool to support therapeutic monitoring is still growing. Although developers put efforts into it the last years, there is still room for improvement, especially in terms of institutional information system interfacing, user-friendliness, capacity of data storage and report generation.
Resumo:
Objectives: Therapeutic drug monitoring (TDM) aims at optimizing treatment by individualizing dosage regimen based on blood concentrations measurement. Maintaining concentrations within a target range requires pharmacokinetic (PK) and clinical capabilities. Bayesian calculation represents a gold standard in TDM approach but requires computing assistance. The aim of this benchmarking was to assess and compare computer tools designed to support TDM clinical activities.¦Methods: Literature and Internet were searched to identify software. Each program was scored against a standardized grid covering pharmacokinetic relevance, user-friendliness, computing aspects, interfacing, and storage. A weighting factor was applied to each criterion of the grid to consider its relative importance. To assess the robustness of the software, six representative clinical vignettes were also processed through all of them.¦Results: 12 software tools were identified, tested and ranked. It represents a comprehensive review of the available software characteristics. Numbers of drugs handled vary from 2 to more than 180, and integration of different population types is available for some programs. Nevertheless, 8 programs offer the ability to add new drug models based on population PK data. 10 computer tools incorporate Bayesian computation to predict dosage regimen (individual parameters are calculated based on population PK models). All of them are able to compute Bayesian a posteriori dosage adaptation based on a blood concentration while 9 are also able to suggest a priori dosage regimen, only based on individual patient covariates. Among those applying Bayesian analysis, MM-USC*PACK uses a non-parametric approach. The top 2 programs emerging from this benchmark are MwPharm and TCIWorks. Others programs evaluated have also a good potential but are less sophisticated or less user-friendly.¦Conclusions: Whereas 2 software packages are ranked at the top of the list, such complex tools would possibly not fit all institutions, and each program must be regarded with respect to individual needs of hospitals or clinicians. Programs should be easy and fast for routine activities, including for non-experienced users. Although interest in TDM tools is growing and efforts were put into it in the last years, there is still room for improvement, especially in terms of institutional information system interfacing, user-friendliness, capability of data storage and automated report generation.