53 resultados para Red cell concentrates supply


Relevância:

50.00% 50.00%

Publicador:

Resumo:

The age of erythrocyte concentrates (EC) in transfusion medicine and the adverse outcomes when transfusing long-term-stored EC are highly controversial issues. Whereas the definition of a short-term-stored EC or a long-term-stored EC is unclear in clinical trials, data based on in vitro storage assays can help defining a limit in addition of the expiration date. The present review merges together these data in order to highlight an EC age cut-off and points out potential misleading consideration. The analysis of in vitro data highlights the presence of reversible and irreversible storage lesions and demonstrates that red blood cells (RBC) exhibit two limits during storage: one around 2 weeks and another one around 4 weeks of storage. Of particular importance, the first lesions to appear, i.e. the reversible ones, are per se reversible once transfused, whereas the irreversible lesions are not. In clinical trials, the EC age cut-off for short-term storage is in general fewer than 14 days (11 ± 4 days) and more disperse for long-term-stored EC (17 ± 13 days), regardless the clinical outcomes. Taking together, EC age cut-off in clinical trials does not totally fall into line of in vitro aging data, whereas it is the key criteria in clinical studies. Long-term-stored EC considered in clinical trials are not probably old enough to answer the question: "Does transfusion of long-term-stored EC (older than 4 weeks) result in worse clinical outcomes?" Depending on ethical concerns and clinical practices, older EC than currently assayed in clinical trials should have to be considered. These two worlds trying to understand the aging of erythrocytes and the impact on patients do not seem to speak the same language.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

There has been a long debate since the introduction of blood analysis prior to major sports events, to find out whether blood samples should be analysed right away on the site of competition or whether they should be transported and analysed in an anti-doping laboratory. Therefore, it was necessary to measure blood samples and compare the results obtained right after the blood withdrawal with those obtained after a few hours delay. Furthermore, it was interesting to determine the effect of temperature on the possible deterioration of red blood cell analytes used for testing recombinant erythropoietin abuse. Healthy volunteers were asked to give two blood samples and one of these was kept at room temperature whereas the second one was put into a refrigerator. On a regular basis, the samples were rolled for homogenisation and temperature stabilisation and were analysed with the same haematological apparatus. The results confirmed that blood controls prior to competition should be performed as soon as possible with standardised pre-analytical conditions to avoid too many variations notably on the haematocrit and the reticulocyte count. These recommendations should ideally also be applied to the all the blood controls compulsory for the medical follow up, otherwise unexplainable values could be misinterpreted and could for instance lead to a period of incapacity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Digital holographic microscopy (DHM) is a technique that allows obtaining, from a single recorded hologram, quantitative phase image of living cell with interferometric accuracy. Specifically the optical phase shift induced by the specimen on the transmitted wave front can be regarded as a powerful endogenous contrast agent, depending on both the thickness and the refractive index of the sample. Thanks to a decoupling procedure cell thickness and intracellular refractive index can be measured separately. Consequently, Mean corpuscular volume (MCV) and mean corpuscular hemoglobin concentration (MCHC), two highly relevant clinical parameters, have been measured non-invasively at a single cell level. The DHM nanometric axial and microsecond temporal sensitivities have permitted to measure the red blood cell membrane fluctuations (CMF) on the whole cell surface. ©2009 COPYRIGHT SPIE--The International Society for Optical Engineering.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

An 18-year-old man presented with a growing painless left scrotal mass. Sonography showed a hydrocele and a homogeneous, well-encapsulated left extratesticular mass with similar echogenicity as the normal testis, suggestive of a splenogonadal fusion. To substantiate the diagnosis, the patient underwent Tc-99m heat-denatured red blood cell scintigraphy showing normal physiological hyperactivity in the spleen but activity similar to the blood pool projecting on the upper part of the left testis. This made testicular splenic tissue less likely. The patient underwent resection and histopathology revealed a well-differentiated papillary mesothelioma. Inguinal orchidectomy was subsequently performed and the patient was free of recurrence at 18 months.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

RésuméLes microparticules sont des vésicules phospholipidiques de moins d‟un micromètre relâchées dans le sang par différents types cellulaires, comme les cellules endothéliales, les plaquettes ou encore les globules blancs et rouges. Elles sont bioactives et impliquées dans de nombreux processus physiologiques incluant l‟hémostase. De plus, un nombre élevé de microparticules circulantes dans le sang a été observé dans différentes pathologies.Dans le domaine de la transfusion, les microparticules de globules rouges ont été détectées dans les concentrés érythrocytaires. Le but de cette recherche était de caractériser les microparticules de globules rouges et d‟évaluer si ces dernières avaient un rôle en transfusion. Pour ce faire, une approche globale utilisant différentes techniques comme la cytométrie de flux, la protéomique, la microscopie ainsi que des tests d‟hémostase de routines, a été adoptée.Le présent travail de thèse a démontré que les microparticules de globules rouges s‟accumulent dans les concentrés érythrocytaires pendant le stockage. Leur bioactivité a été démontrée de part leur rôle actif dans le processus de la coagulation. En effet, lors de test de génération de thrombine, elles peuvent non seulement supporter ce processus de coagulation, mais aussi le déclencher par un mécanisme inconnu sous certaines circonstances. Les microparticules de globules rouges présentent aussi des antigènes de groupes sanguins à leur surface, toutefois, leur implication potentielle dans l‟induction d‟une réponse immunitaire n‟est pas connue. Bien que le mécanisme de formation et d‟émissions des microparticules par les globules rouges ne soit pas complètement élucidé, il a été démontré qu‟elles n‟ont pas toutes le même contenu protéique et donc qu‟elles pourraient avoir des fonctions différentes.Au vu des résultats, notamment par leur implication dans la coagulation, il est fort probable que la présence de microparticules puisse affecter la qualité des produits sanguins, et causer des réactions transfusionnelles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES: Microparticles (MPs) are small phospholipid vesicles of less than 1 microm, shed in blood flow by various cell types. These MPs are involved in several biological processes and diseases. MPs have also been detected in blood products; however, their role in transfused patients is unknown. The purpose of this study was to characterize those MPs in blood bank conditions. MATERIALS AND METHODS: Qualitative and quantitative experiments using flow cytometry or proteomic techniques were performed on MPs derived from erythrocytes concentrates. In order to count MPs, they were either isolated by various centrifugation procedures or counted directly in erythrocyte concentrates. RESULTS: A 20-fold increase after 50 days of storage at 4 degrees C was observed (from 3370 +/- 1180 MPs/microl at day 5 to 64 850 +/- 37 800 MPs/microl at day 50). Proteomic analysis revealed changes of protein expression comparing MPs to erythrocyte membranes. Finally, the expression of Rh blood group antigens was shown on MPs generated during erythrocyte storage. CONCLUSIONS: Our work provides evidence that storage of red blood cell is associated with the generation of MPs characterized by particular proteomic profiles. These results contribute to fundamental knowledge of transfused blood products.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Microparticles are phospholipid vesicles shed mostly in biological fluids, such as blood or urine, by various types of cells, such as red blood cells (RBCs), platelets, lymphocytes, endothelial cells. These microparticles contain a subset of the proteome of their parent cell, and their ready availability in biological fluid has raised strong interest in their study, as they might be markers of cell damage. However, their small size as well as their particular physico-chemical properties makes them hard to detect, size, count and study by proteome analysis. In this review, we report the pre-analytical and methodological caveats that we have faced in our own research about red blood cell microparticles in the context of transfusion science, as well as examples from the literature on the proteomics of various kinds of microparticles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Anaemia is a chief determinant of global ill health, contributing to cognitive impairment, growth retardation and impaired physical capacity. To understand further the genetic factors influencing red blood cells, we carried out a genome-wide association study of haemoglobin concentration and related parameters in up to 135,367 individuals. Here we identify 75 independent genetic loci associated with one or more red blood cell phenotypes at P < 10(-8), which together explain 4-9% of the phenotypic variance per trait. Using expression quantitative trait loci and bioinformatic strategies, we identify 121 candidate genes enriched in functions relevant to red blood cell biology. The candidate genes are expressed preferentially in red blood cell precursors, and 43 have haematopoietic phenotypes in Mus musculus or Drosophila melanogaster. Through open-chromatin and coding-variant analyses we identify potential causal genetic variants at 41 loci. Our findings provide extensive new insights into genetic mechanisms and biological pathways controlling red blood cell formation and function.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Red blood cell-derived microparticles (RMPs) are small phospholipid vesicles shed from RBCs in blood units, where they accumulate during storage. Because microparticles are bioactive, it could be suggested that RMPs are mediators of posttransfusion complications or, on the contrary, constitute a potential hemostatic agent. STUDY DESIGN AND METHODS: This study was performed to establish the impact on coagulation of RMPs isolated from blood units. Using calibrated automated thrombography, we investigated whether RMPs affect thrombin generation (TG) in plasma. RESULTS: We found that RMPs were not only able to increase TG in plasma in the presence of a low exogenous tissue factor (TF) concentration, but also to initiate TG in plasma in absence of exogenous TF. TG induced by RMPs in the absence of exogenous TF was neither affected by the presence of blocking anti-TF nor by the absence of Factor (F)VII. It was significantly reduced in plasma deficient in FVIII or F IX and abolished in FII-, FV-, FX-, or FXI-deficient plasma. TG was also totally abolished when anti-XI 01A6 was added in the sample. Finally, neither Western blotting, flow cytometry, nor immunogold labeling allowed the detection of traces of TF antigen. In addition, RMPs did not comprise polyphosphate, an important modulator of coagulation. CONCLUSIONS: Taken together, our data show that RMPs have FXI-dependent procoagulant properties and are able to initiate and propagate TG. The anionic surface of RMPs might be the site of FXI-mediated TG amplification and intrinsic tenase and prothrombinase complex assembly.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

RPE65 is a retinoid isomerase required for the production of 11-cis-retinal, the chromophore of both cone and rod visual pigments. We recently established an R91W knock-in mouse strain as homologous animal model for patients afflicted by this mutation in RPE65. These mice have impaired vision and can only synthesize minute amounts of 11-cis-retinal. Here, we investigated the consequences of this chromophore insufficiency on cone function and pathophysiology. We found that the R91W mutation caused cone opsin mislocalization and progressive geographic cone atrophy. Remnant visual function was mostly mediated by rods. Ablation of rod opsin corrected the localization of cone opsin and improved cone retinal function. Thus, our analyses indicate that under conditions of limited chromophore supply rods and cones compete for 11-cis-retinal that derives from regeneration pathway(s) which are reliant on RPE65. Due to their higher number and the instability of cone opsin, rods are privileged under this condition while cones suffer chromophore deficiency and degenerate. These findings reinforce the notion that in patients any effective gene therapy with RPE65 needs to target the cone-rich macula directly to locally restore the cones' chromophore supply outside the reach of rods.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Cell-cell fusion is essential for fertilization. For fusion of walled cells, the cell wall must be degraded at a precise location but maintained in surrounding regions to protect against lysis. In fission yeast cells, the formin Fus1, which nucleates linear actin filaments, is essential for this process. In this paper, we show that this formin organizes a specific actin structure-the actin fusion focus. Structured illumination microscopy and live-cell imaging of Fus1, actin, and type V myosins revealed an aster of actin filaments whose barbed ends are focalized near the plasma membrane. Focalization requires Fus1 and type V myosins and happens asynchronously always in the M cell first. Type V myosins are essential for fusion and concentrate cell wall hydrolases, but not cell wall synthases, at the fusion focus. Thus, the fusion focus focalizes cell wall dissolution within a broader cell wall synthesis zone to shift from cell growth to cell fusion.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Microparticles are small phospholipid vesicles of <1 lm shed in blood flow by various cell types including red blood cells. Erythrocyte-derived microparticles (EMPs) accumulate in erythrocyte concentrates (ECs) during their storage time. EMPs are considered as part of storage lesion and as their exact role is not elucidated, they could be involved in these clinical outcomes. Aims: The aim of this study is to evaluate the impact and implication of EMPs isolate from ECs on coagulation. Methods: EMPs were first isolated from erythrocyte concentrates by centrifugation and counted by flow cytometry. Using a calibrated automated thrombogram, EMPs were then added to different type of plasmas in order to evaluate the potential of thrombin generation. Results: We demonstrate that EMPs isolated from ECs are capable to accelerate and amplify thrombin generation in presence of a low exogenous tissue factor concentration, thanks to their negatively charged membrane necessary for the assembly of coagulation complexes. Interestingly, in the absence of exogenous tissue factor, EMPs are also able to trigger thrombin generation. In addition, thrombin generation induced by EMPs is not affected by the presence of anti-TF antibodies. Finally, thrombin generation induced by EMPs is not affected by using plasma samples deficient in factor VII, XI or XII. However, thrombin generation is reduced in plasma deficient in factor VIII or IX and is completely abolished in plasma deficient in factor X, V or II. No thrombin generation was observed in plasma samples without EMPs. Summary/conclusion: Several studies have shown a link between storage time of blood products and post transfusion complications. We provide evidence that EMPs accumulated during storage of erythrocyte concentrates were not only able to accelerate and support thrombin generation in plasma in presence of a low exogenous tissue-factor concentration, but also to trigger thrombin generation in absence of exogenous TF. The impact of those transfused EMs is unknown on recipients, nevertheless it could be hypothesized that under certain circumstances, transfused EMPs could be involved in thrombin generation and could be linked to adverse clinical outcome. Further work is needed to determine whether procoagulant EMPs transfused with erythrocyte concentrate may account for some of the complications occurring after red blood cell transfusion, and more particularly after transfusion of ''older''stored blood, rich in EMPs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During blood banking, erythrocytes undergo storage lesions, altering or degrading their metabolism, rheological properties, and protein content. Carbonylation is a hallmark of protein oxidative lesions, thus of red blood cell oxidative stress. In order to improve global erythrocyte protein carbonylation assessment, subcellular fractionation has been established, allowing us to work on four different protein populations, namely soluble hemoglobin, hemoglobin-depleted soluble fraction, integral membrane and cytoskeleton membrane protein fractions. Carbonylation in erythrocyte-derived microparticles has also been investigated. Carbonylated proteins were derivatized with 2,4-dinitrophenylhydrazine (2,4-DNPH) and quantified by western blot analyses. In particular, carbonylation in the cytoskeletal membrane fraction increased remarkably between day 29 and day 43 (P<0.01). Moreover, protein carbonylation within microparticles released during storage showed a two-fold increase along the storage period (P<0.01). As a result, carbonylation of cytoplasmic and membrane protein fractions differs along storage, and the present study allows explaining two distinct steps in global erythrocyte protein carbonylation evolution during blood banking. This article is part of a Special Issue entitled: Integrated omics.