417 resultados para Rectangular Pressure Pulse
Resumo:
BACKGROUND: Pulse wave velocity (PWV), an index of arterial wall stiffness, is modulated by blood pressure (BP). Whether heart rate (HR) is also a modulator of PWV is controversial. Recent research involving mainly patients with high aortic PWV have found either no change or a positive correlation between the two. Given that PWV is increasingly being measured in cardiovascular studies, the relationship between HR and PWV should be known in patients with preserved arterial wall elasticity. OBJECTIVE: The aim of this study was to evaluate the importance of HR as a determinant of the variability in PWV in patients with a low degree of atherosclerosis. DESIGN AND METHODS: Fourteen patients (five female, nine male; aged 68 +/- 8 years) were evaluated post pacemaker implantation due to sick sinus or carotid hypersensitivity syndromes. Carotid-femoral PWV was measured at rest and during atrial pacing at 80, 90 and 100 bpm (paced HR). Arterial femoral blood flow (AFBF) was measured by echodoppler. RESULTS: PWV increased from 6.2 +/- 1.5 m/s (mean +/- SD) during resting sinus rhythm (HR 62 +/- 8 bpm; mean +/- SD) to 6.8 +/- 1.0, 7.0 +/- 0.9, and 7.6 +/- 1.1 m/s at pacing rates of 80, 90 and 100 bpm, respectively (P < 0.0001). Systolic (SBP) and mean blood pressure (MBP) remained constant at all HR levels, whereas AFBF increased in a linear fashion. CONCLUSIONS: These results demonstrate that even in patients with a low degree of atherosclerosis, HR is a potential modulator of carotid-femoral PWV.
Resumo:
We estimated the heritability of ambulatory systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure (PP) in east African families with at least 2 hypertensive siblings and living in the Seychelles islands (Indian Ocean). The sample consisted of 314 individuals (147 men and 167 women), both normotensive and hypertensive, from 76 pedigrees (mean+/-SD of 4.1+/-2.8 persons per pedigree). After a 2-week off-treatment period, daytime and nighttime ambulatory blood pressure (BP) was monitored. Office BP was measured with a standard mercury sphygmomanometer. We estimated by maximum likelihood the age- and sex-adjusted heritabilities from the additive polygenic component of the variance of the traits allowing for the presence of other familial correlations. We also adjusted for ascertainment (ie, for the fact that 2 siblings had to be hypertensive) and examined the effect of adjusting for body mass index, 24-hour urinary excretion of sodium and potassium, plasma renin activity, and plasma aldosterone concentration. Heritability estimates (+/-SE) for ambulatory SBP, DBP, and PP were, respectively, 0.37+/-0.12/0.24+/-0.12/0.54+/-0.12 for daytime and 0.34+/-0.13/ 0.37+/-0.15/0.47+/-0.12 for nighttime measurements (P<0.05 for all estimates). Heritability estimates for office SBP, DBP, and PP were, respectively, 0.20+/-0.11, 0.05+/-0.09, and 0.37+/-0.12. Heritability estimates for SBP varied markedly according to whether participants were treated for hypertension at baseline. The present data show that ambulatory BP and PP have a high heritability in families of African descent. They also demonstrate that antihypertensive treatment and the number of BP measurements have a major influence on the heritability estimates.
Resumo:
The clinical demand for a device to monitor Blood Pressure (BP) in ambulatory scenarios with minimal use of inflation cuffs is increasing. Based on the so-called Pulse Wave Velocity (PWV) principle, this paper introduces and evaluates a novel concept of BP monitor that can be fully integrated within a chest sensor. After a preliminary calibration, the sensor provides non-occlusive beat-by-beat estimations of Mean Arterial Pressure (MAP) by measuring the Pulse Transit Time (PTT) of arterial pressure pulses travelling from the ascending aorta towards the subcutaneous vasculature of the chest. In a cohort of 15 healthy male subjects, a total of 462 simultaneous readings consisting of reference MAP and chest PTT were acquired. Each subject was recorded at three different days: D, D+3 and D+14. Overall, the implemented protocol induced MAP values to range from 80 ± 6 mmHg in baseline, to 107 ± 9 mmHg during isometric handgrip maneuvers. Agreement between reference and chest-sensor MAP values was tested by using intraclass correlation coefficient (ICC = 0.78) and Bland-Altman analysis (mean error = 0.7 mmHg, standard deviation = 5.1 mmHg). The cumulative percentage of MAP values provided by the chest sensor falling within a range of ±5 mmHg compared to reference MAP readings was of 70%, within ±10 mmHg was of 91%, and within ±15mmHg was of 98%. These results point at the fact that the chest sensor complies with the British Hypertension Society (BHS) requirements of Grade A BP monitors, when applied to MAP readings. Grade A performance was maintained even two weeks after having performed the initial subject-dependent calibration. In conclusion, this paper introduces a sensor and a calibration strategy to perform MAP measurements at the chest. The encouraging performance of the presented technique paves the way towards an ambulatory-compliant, continuous and non-occlusive BP monitoring system.
Resumo:
Blood pressure (BP) is a heritable, quantitative trait with intraindividual variability and susceptibility to measurement error. Genetic studies of BP generally use single-visit measurements and thus cannot remove variability occurring over months or years. We leveraged the idea that averaging BP measured across time would improve phenotypic accuracy and thereby increase statistical power to detect genetic associations. We studied systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP) averaged over multiple years in 46,629 individuals of European ancestry. We identified 39 trait-variant associations across 19 independent loci (p < 5 × 10(-8)); five associations (in four loci) uniquely identified by our LTA analyses included those of SBP and MAP at 2p23 (rs1275988, near KCNK3), DBP at 2q11.2 (rs7599598, in FER1L5), and PP at 6p21 (rs10948071, near CRIP3) and 7p13 (rs2949837, near IGFBP3). Replication analyses conducted in cohorts with single-visit BP data showed positive replication of associations and a nominal association (p < 0.05). We estimated a 20% gain in statistical power with long-term average (LTA) as compared to single-visit BP association studies. Using LTA analysis, we identified genetic loci influencing BP. LTA might be one way of increasing the power of genetic associations for continuous traits in extant samples for other phenotypes that are measured serially over time.
Resumo:
Background There are only a few trials for the very elderly population (>79 years). No consensus, which blood pressure (BP) goals and substances should be applied, has been found yet. This survey was undertaken to investigate how octogenarians are treated and attain BP targets in the Swiss primary care. Methods Data from 4594 hypertensive patients were collected within 7 days. Eight hundred and seventy-seven patients met the requirement to be >79 years. We assessed substances/combinations and investigated pulse pressure and target blood pressure attainment (TBPA) using three different recommendations [Canadian Hypertension Education Program (CHEP), Swiss Society of Hypertension (SSH), European Society of Hypertension-European Society of Cardiology (ESH-ESC)]. Secondarily, we compared TBPA attained by angiotensin-converting enzyme inhibitor (ACEI)/diuretic (D), angiotensin receptor blocker (ARB)/D and calcium channel blocker (CCB)/D with any other dual therapy and investigated whether Ds/beta-blockers (BBs) or Ds/renin angiotensin-converting enzyme inhibitors (RAAS-Is) lead to higher TBPA. Finally, we assessed the impact of drug administration, practical work experience, location and specialization of GPs on TBPA. Results Octogenarians attained target blood pressure (TBP) between 44% (ESH-ESC) and 74% (SSH). Optimal/normal BP was reached in 22.8% of patients. Pulse pressure <65 mmHg was shown in 66.4% of patients. Monotherapy was most commonly applied followed by dual single-pill combination with ARB/D (46.5%) or ACEI/D (36.0%). No benefit in TBPA was found comparing a RAASI/D and CCB/D treatment with any other dual combination. There was also no difference between BB/D and RAAS-I/D combination therapy and between single-pill combination and dual free combinations. Conclusions GPs adhere to the use of substances proven in outcome trials and attain high TBP. No difference in meeting BP goals could be found using different drug classes. There is an unmet need to harmonize recommendations and to add additional information for the treatment of octogenarians.
Resumo:
We studied the effects on blood pressure and heart rate of two different phenylethanolamine N-methyltransferase (PNMT) inhibitors in normotensive, in two-kidney renal hypertensive, and in deoxycorticosterone-salt (DOC-salt) hypertensive rats. One compound (SK&F 64139) blocks the conversion of norepinephrine to epinephrine in both the central and the peripheral nervous system, whereas the other (SK&F 29661) does not cross the blood-brain barrier and therefore is active mostly in the adrenal glands. In the rats given SK&F 29661, practically no acute blood pressure changes were in the adrenal glands. In the rats given SK&F 64139 induced only a minor blood pressure and heart rate response in normotensive and two-kidney renal hypertensive rats. However, in DOC-salt hypertensive rats, it reduced arterial pressure to approximately normal levels and concomitantly slowed pulse rate. There was a close correlation between the magnitude of the blood pressure response observed in all SK&F 64139-treated animals and the control plasma norepinephrine (4 = -0.795, P less than 0.001) and epinephrine (r = -0.789, P less than 0.001) levels. These results suggest an important role for central epinephrine in regulating the peripheral sympathoadrenomedullary and the baroreceptor reflex activity, particularly when the maintenance of the high blood pressure is not renin-dependent.
Resumo:
Although age-dependent effects on blood pressure (BP) have been reported, they have not been systematically investigated in large-scale genome-wide association studies (GWASs). We leveraged the infrastructure of three well-established consortia (CHARGE, GBPgen, and ICBP) and a nonstandard approach (age stratification and metaregression) to conduct a genome-wide search of common variants with age-dependent effects on systolic (SBP), diastolic (DBP), mean arterial (MAP), and pulse (PP) pressure. In a two-staged design using 99,241 individuals of European ancestry, we identified 20 genome-wide significant (p ≤ 5 × 10(-8)) loci by using joint tests of the SNP main effect and SNP-age interaction. Nine of the significant loci demonstrated nominal evidence of age-dependent effects on BP by tests of the interactions alone. Index SNPs in the EHBP1L1 (DBP and MAP), CASZ1 (SBP and MAP), and GOSR2 (PP) loci exhibited the largest age interactions, with opposite directions of effect in the young versus the old. The changes in the genetic effects over time were small but nonnegligible (up to 1.58 mm Hg over 60 years). The EHBP1L1 locus was discovered through gene-age interactions only in whites but had DBP main effects replicated (p = 8.3 × 10(-4)) in 8,682 Asians from Singapore, indicating potential interethnic heterogeneity. A secondary analysis revealed 22 loci with evidence of age-specific effects (e.g., only in 20 to 29-year-olds). Age can be used to select samples with larger genetic effect sizes and more homogenous phenotypes, which may increase statistical power. Age-dependent effects identified through novel statistical approaches can provide insight into the biology and temporal regulation underlying BP associations.
Resumo:
Pulse-wave velocity (PWV) is considered as the gold-standard method to assess arterial stiffness, an independent predictor of cardiovascular morbidity and mortality. Current available devices that measure PWV need to be operated by skilled medical staff, thus, reducing the potential use of PWV in the ambulatory setting. In this paper, we present a new technique allowing continuous, unsupervised measurements of pulse transit times (PTT) in central arteries by means of a chest sensor. This technique relies on measuring the propagation time of pressure pulses from their genesis in the left ventricle to their later arrival at the cutaneous vasculature on the sternum. Combined thoracic impedance cardiography and phonocardiography are used to detect the opening of the aortic valve, from which a pre-ejection period (PEP) value is estimated. Multichannel reflective photoplethysmography at the sternum is used to detect the distal pulse-arrival time (PAT). A PTT value is then calculated as PTT = PAT - PEP. After optimizing the parameters of the chest PTT calculation algorithm on a nine-subject cohort, a prospective validation study involving 31 normo- and hypertensive subjects was performed. 1/chest PTT correlated very well with the COMPLIOR carotid to femoral PWV (r = 0.88, p < 10 (-9)). Finally, an empirical method to map chest PTT values onto chest PWV values is explored.
Resumo:
OBJECTIVE: The measurement of cardiac output is a key element in the assessment of cardiac function. Recently, a pulse contour analysis-based device without need for calibration became available (FloTrac/Vigileo, Edwards Lifescience, Irvine, CA). This study was conducted to determine if there is an impact of the arterial catheter site and to investigate the accuracy of this system when compared with the pulmonary artery catheter using the bolus thermodilution technique (PAC). DESIGN: Prospective study. SETTING: The operating room of 1 university hospital. PARTICIPANTS: Twenty patients undergoing cardiac surgery. INTERVENTIONS: CO was determined in parallel by the use of the Flotrac/Vigileo systems in the radial and femoral position (CO_rad and CO_fem) and by PAC as the reference method. Data triplets were recorded at defined time points. The primary endpoint was the comparison of CO_rad and CO_fem, and the secondary endpoint was the comparison with the PAC. MEASUREMENTS AND MAIN RESULTS: Seventy-eight simultaneous data recordings were obtained. The Bland-Altman analysis for CO_fem and CO_rad showed a bias of 0.46 L/min, precision was 0.85 L/min, and the percentage error was 34%. The Bland-Altman analysis for CO_rad and PAC showed a bias of -0.35 L/min, the precision was 1.88 L/min, and the percentage error was 76%. The Bland-Altman analysis for CO_fem and PAC showed a bias of 0.11 L/min, the precision was 1.8 L/min, and the percentage error was 69%. CONCLUSION: The FloTrac/Vigileo system was shown to not produce exactly the same CO data when used in radial and femoral arteries, even though the percentage error was close to the clinically acceptable range. Thus, the impact of the introduction site of the arterial catheter is not negligible. The agreement with thermodilution was low.
Resumo:
Purpose: In vitro studies in porcine eyes have demonstrated a good correlation between induced intraocular pressure variations and corneal curvature changes, using a contact lens with an embedded microfabricated strain gauge. Continuous 24 hour-intraocular pressure (IOP) monitoring to detect large diurnal fluctuation is currently an unmet clinical need. The aims of this study is to evaluate precision of signal transmission and biocompatibility of 24 hour contact lens sensor wear (SENSIMED Triggerfish®) in humans. Methods: After full eye examination in 10 healthy volunteers, a 8.7 mm radius contact lens sensor and an orbital bandage containing a loop antenna were applied and connected to a portable recorder. Best corrected visual acuity and position, lubrication status and mobility of the sensor were assessed after 5 and 30 minutes, 4, 7 and 24 hours. Subjective comfort was scored and activities documented in a logbook. After sensor removal full eye examination was repeated, and the registration signal studied. Results: The comfort score was high and did not fluctuate significantly, except at the 7 hour-visit. The mobility of the contact lens was minimal but its lubrication remained good. Best corrected visual acuity was significantly reduced during the sensor wear and immediately after its removal. Three patients developed mild corneal staining. In all but one participant we obtained a registration IOP curve with visible ocular pulse amplitude. Conclusions: This 24 hour-trial confirmed the functionality and biocompatibility of SENSIMED Triggerfish® wireless contact lens sensor for IOP-fluctuation monitoring in volunteers. Further studies with a range of different contact lens sensor radii are indicated.
Resumo:
J Clin Hypertens (Greenwich). 2012;14:773-778. ©2012 Wiley Periodicals, Inc. Postmenopausal women are at greater risk for hypertension-related cardiovascular disease. Antihypertensive therapy may help alleviate arterial stiffness that represents a potential modifiable risk factor of hypertension. This randomized controlled study investigated the difference between an angiotensin receptor blocker and a calcium channel blocker in reducing arterial stiffness. Overall, 125 postmenopausal hypertensive women (age, 61.4±6 years; systolic blood pressure/diastolic blood pressure [SBP/DBP], 158±11/92±9 mm Hg) were randomized to valsartan 320 mg±hydrochlorothiazide (HCTZ) (n=63) or amlodipine 10 mg±HCTZ (n=62). The primary outcome was carotid-to-femoral pulse wave velocity (PWV) changes after 38 weeks of treatment. Both treatments lowered peripheral blood pressure (BP) (-22.9/-10.9 mm Hg for valsartan and -25.2/-11.7 mm Hg for amlodipine, P=not significant) and central BP (-15.7/-7.6 mm Hg for valsartan and -19.2/-10.3 mm Hg for amlodipine, P<.05 for central DBP). Both treatments similarly reduced the carotid-femoral PWV (-1.9 vs -1.7 m/s; P=not significant). Amlodipine was associated with a higher incidence of peripheral edema compared with the valsartan group (77% vs 14%, P<.001). BP lowering in postmenopausal women led to a reduction in arterial stiffness as assessed by PWV measurement. Both regimens reduced PWV to a similar degree after 38 weeks of treatment despite differences in central BP lowering, suggesting that the effect of valsartan on PWV is mediated through nonhemodynamic effects.
Resumo:
Objective: Blood pressure is known to aggregate in families. Yet, heritability estimates are population-specific and no Swiss data have been published so far. Moreover, little is known on the heritability of the white-coat effect. We investigated the heritability of various blood pressure (BP) traits in a Swiss population-based sample. Methods: SKIPOGH (Swiss Kidney Project on Genes in Hypertension) is a family-based multi-centre (Lausanne, Bern, Geneva) cross-sectional study that examines the role of genes in determining BP levels. Office and 24-hour ambulatory BP were measured using validated devices (A&D UM-101 and Diasys Integra). We estimated the heritability of systolic BP (SBP), diastolic BP (DBP), heart rate (HR), pulse pressure (PP), proportional white-coat effect (i.e. [office BP-mean ambulatory daytime BP]/mean ambulatory daytime BP), and nocturnal BP dipping (difference between mean ambulatory daytime and night-time BP) using a maximum likelihood method implemented in the SAGE software. Analyses were adjusted for age, sex, body mass index (BMI), and study centre. Analyses involving PP were additionally adjusted for DBP. Results: The 517 men and 579 women included in this analysis had a mean (}SD) age of 46.8 (17.8) and 47.8 (17.1) years and a mean BMI of 26.0 (4.2) and 24.2 (4.6) kg/m2, respectively. Heritability estimates (}SE) for office SBP, DBP, HR, and PP were 0.20}0.07, 0.20}0.07, 0.39}0.08, and 0.16}0.07 (all P<0.01). Heritability estimates for 24-hour ambulatory SBP, DBP, HR, and PP were, respectively, 0.39}0.07, 0.30}.08, 0.19}0.09, and 0.25}0.08 (all P<0.05). The heritability of the white-coat effect was 0.29}0.07 for SBP and 0.31}0.07 for DBP (both P<0.001). The heritability of nocturnal BP dipping was 0.15}0.08 for SBP and 0.22}0.07 for DBP (both P<0.05). Conclusions: We found that the white-coat effect is significantly heritable. Our findings show that BP traits are moderately heritable in a multi-centric study in Switzerland, in line with previous population-based studies, justifying the ongoing search for genetic determinants in this field.
Resumo:
In a prospective investigation of 17 children with severe croup, we analyzed the effect of epinephrine inhalations and mild sedation with chloral hydrate on transcutaneous carbon dioxide pressure (tcPCO2), pulse oximetry measurements, and croup scores. There was a highly significant reduction (p less than 0.001) in the tcPCO2 values and croup scores after inhalation of epinephrine. The changes in the tcPCO2 values correlated with the clinical findings. Mild sedation also significantly improved the croup scores but failed to influence the tcPCO2 values. There was not statistically significant difference in pulse oximetry saturation, fraction of administered oxygen, heart rate, or respiratory rate before and after inhalation of epinephrine or chloral hydrate administration. Monitoring tcPCO2 appears to be a reliable and objective tool for managing patients with upper airway obstruction, whereas croup scores may be misleading.
Resumo:
PURPOSE: Intravenous (i.v.) pulse of corticosteroids has been used to treat severe eye inflammation from different origins. Whether such large doses result in vitreous levels that differ either in magnitude or duration from more conventional corticotherapy remain unsolved issues. The authors therefore determined levels of methylprednisolone hemisuccinate and methylprednisolone in the vitreous and serum of patients at different times after a single i.v. perfusion of methylprednisolone hemisuccinate. METHODS: Fifty patients scheduled for a first vitrectomy received an i.v. injection of 500 mg hemisuccinate methylprednisolone at different times before surgery (from 15-24 hours). Patients were divided into two groups: those with (n = 21) and without (n = 29) retinal detachment (RD). Pure vitreous samples were analyzed by high-pressure liquid chromatography. RESULTS: Both the ester and the nonester methylprednisolone forms were sampled in the vitreous, showing a slower rate of hydrolysis compared to the serum. On average, the highest concentration of total methylprednisolone in the vitreous was found at 2.5 hours and rapidly decreased for the group of patients with RD. In the group of patients without RD, the highest concentration was reached at 6 hours and then slowly decreased. The antiinflammatory potency in the nondetached retina eyes was approximately 500 times more than in the physiologic vitreous, but despite the route of administration (i.v. or oral), only 1/10 of the corticosteroid serum concentration was measured in the vitreous. CONCLUSION: High concentration of methylprednisolone is achieved by i.v. pulse therapy without changing the kinetic of entry in the vitreous of nondetached retina eyes when compared to conventional oral corticotherapy. Hydrolysis occurs in the vitreous resulting in high rate of active form. Pulse therapy could be considered in cases of severe ocular inflammation involving the posterior segment of the eye.
Resumo:
Electrical impedance tomography (EIT) allows the measurement of intra-thoracic impedance changes related to cardiovascular activity. As a safe and low-cost imaging modality, EIT is an appealing candidate for non-invasive and continuous haemodynamic monitoring. EIT has recently been shown to allow the assessment of aortic blood pressure via the estimation of the aortic pulse arrival time (PAT). However, finding the aortic signal within EIT image sequences is a challenging task: the signal has a small amplitude and is difficult to locate due to the small size of the aorta and the inherent low spatial resolution of EIT. In order to most reliably detect the aortic signal, our objective was to understand the effect of EIT measurement settings (electrode belt placement, reconstruction algorithm). This paper investigates the influence of three transversal belt placements and two commonly-used difference reconstruction algorithms (Gauss-Newton and GREIT) on the measurement of aortic signals in view of aortic blood pressure estimation via EIT. A magnetic resonance imaging based three-dimensional finite element model of the haemodynamic bio-impedance properties of the human thorax was created. Two simulation experiments were performed with the aim to (1) evaluate the timing error in aortic PAT estimation and (2) quantify the strength of the aortic signal in each pixel of the EIT image sequences. Both experiments reveal better performance for images reconstructed with Gauss-Newton (with a noise figure of 0.5 or above) and a belt placement at the height of the heart or higher. According to the noise-free scenarios simulated, the uncertainty in the analysis of the aortic EIT signal is expected to induce blood pressure errors of at least ± 1.4 mmHg.