166 resultados para Reactive parameters
Resumo:
Water movement in unsaturated soils gives rise to measurable electrical potential differences that are related to the flow direction and volumetric fluxes, as well as to the soil properties themselves. Laboratory and field data suggest that these so-called streaming potentials may be several orders of magnitudes larger than theoretical predictions that only consider the influence of the relative permeability and electrical conductivity on the self potential (SP) data. Recent work has improved predictions somewhat by considering how the volumetric excess charge in the pore space scales with the inverse of water saturation. We present a new theoretical approach that uses the flux-averaged excess charge, not the volumetric excess charge, to predict streaming potentials. We present relationships for how this effective excess charge varies with water saturation for typical soil properties using either the water retention or the relative permeability function. We find large differences between soil types and the predictions based on the relative permeability function display the best agreement with field data. The new relationships better explain laboratory data than previous work and allow us to predict the recorded magnitudes of the streaming potentials following a rainfall event in sandy loam, whereas previous models predict values that are three orders of magnitude too small. We suggest that the strong signals in unsaturated media can be used to gain information about fluxes (including very small ones related to film flow), but also to constrain the relative permeability function, the water retention curve, and the relative electrical conductivity function.
Resumo:
Although melanin is the most common pigment in animal integuments, the adaptive function of variation in melanin-based coloration remains poorly understood. The individual fitness returns associated with melanin pigments can be variable across species as these pigments can have physical and biological protective properties and genes involved in melanogenesis may vary in the intensity of pleiotropic effects. Moreover, dark and pale coloration can also enhance camouflage in alternative habitats and melanin-based coloration can be involved in social interactions. We investigated whether darker or paler individuals achieve a higher fitness in birds, a taxon wherein associations between melanin-based coloration and fitness parameters have been studied in a large number of species. A meta-analysis showed that the degree of melanin-based coloration was not significantly associated with laying date, clutch size, brood size, and survival across 26 species. Similar results were found when restricting the analyses to non-sexually dimorphic birds, colour polymorphic and monomorphic species, in passerines and non-passerines and in species for which inter-individual variation in melanism is due to colour intensity. However, eumelanic coloration was positively associated with clutch and brood size in sexually dimorphic species and those that vary in the size of black patches, respectively. Given that greater extent of melanin-based coloration was positively associated with reproductive parameters and survival in some species but negatively in other species, we conclude that in birds the sign and magnitude of selection exerted on melanin-based coloration is species- or trait-specific.
Resumo:
Melan-A specific CD8+ T cells are thought to play an important role against the development of melanoma. Their in vivo expansion is often observed with advanced disease. In recent years, low levels of Melan-A reactive CD8+ T cells have also been found in HLA-A2 healthy donors, but these cells harbor naive characteristics and are thought to be mostly cross-reactive for the Melan-A antigen. Here, we report on a large population of CD8+ T cells reactive for the Melan-A antigen, identified in one donor with no evidence of melanoma. Interestingly, this population is oligoclonal and displays a clear memory phenotype. However, a detailed study of these cells indicated that they are unlikely to be directly specific for melanoma, so that their in vivo expansion may have been driven by an exogenous antigen. Screening of a Melan-A cross-reactive peptide library suggested that these cells may be specific for an epitope derived from a Mycobacterium protein, which would provide a further example of CD8+ T cell cross-reactivity between a pathogen antigen and a tumor antigen. Finally, we discuss potential perspectives regarding the role of such cells in heterologous immunity, by influencing the balance between protective immunity and pathology, e.g. in the case of melanoma development.
Resumo:
The interest in reactive electrophile species (RES) stems largely from the fact that they can have powerful biological activities. RES stimulate the expression of cell survival genes as well many other genes commonly upregulated in environmental stress and pathogenesis. RES levels must be carefully controlled in healthy cells but their formation and destruction during stress is of great interest. Unlike many 'classical' signals and hormones, RES can potentially affect gene expression at all levels by chemically reacting with nucleic acids, proteins and small molecules as well as by indirectly lowering pools of cellular reductants. Recent works involving genetic approaches have begun to provide compelling evidence that, although excess RES production can lead to cell damage, lower levels of RES may modulate the expression of cell survival genes and may actually contribute to survival during severe stress.
Resumo:
Patients with stage I-III melanoma were vaccinated with the modified HLA-A2-binding gp100(209-2M)-peptide after complete surgical resection of their primary lesion and sentinel node biopsy. Cytoplasmic interferon-gamma production by freshly thawed peripheral blood mononuclear cells (direct ex vivo analysis) or by peripheral blood mononuclear cells subjected to 1 cycle of in vitro sensitization with peptide, interleukin-2, and interleukin-15 was measured following restimulation with the modified and native gp100 peptides, and also A2gp100 melanoma cell lines. Peptide-reactive and tumor-reactive T cells were detected in 79% and 66% of selected patients, respectively. Patients could be classified into 3 groups according to their vaccine-elicited T-cell responses. One group of patients responded only to the modified peptide used for immunization, whereas another group of patients reacted to both the modified and native gp100 peptides, but not to naturally processed gp100 antigen on melanoma cells. In the third group of patients, circulating CD8 T cells recognized A2gp100 melanoma cell lines and also both the modified and native peptides. T cells with a low functional avidity, which were capable of lysing tumor cells only if tumor cells were first pulsed by the exogenous administration of native gp100(209-217) peptide were identified in most patients. These results indicate that vaccination with a modified gp100 peptide induced a heterogeneous group of gp100-specific T cells with a spectrum of functional avidities; however, high avidity, tumor-reactive T cells were detected in the majority of patients.
Resumo:
We investigated the physiological consequences of the most challenging mountain ultra-marathon (MUM) in the world: a 330-km trail run with 24000 m of positive and negative elevation change. Neuromuscular fatigue (NMF) was assessed before (Pre-), during (Mid-) and after (Post-) the MUM in experienced ultra-marathon runners (n = 15; finish time = 122.43 hours ±17.21 hours) and in Pre- and Post- in a control group with a similar level of sleep deprivation (n = 8). Blood markers of muscle inflammation and damage were analyzed at Pre- and Post-. Mean ± SD maximal voluntary contraction force declined significantly at Mid- (-13±17% and -10±16%, P<0.05 for knee extensor, KE, and plantar flexor muscles, PF, respectively), and further decreased at Post- (-24±13% and -26±19%, P<0.01) with alteration of the central activation ratio (-24±24% and -28±34% between Pre- and Post-, P<0.05) in runners whereas these parameters did not change in the control group. Peripheral NMF markers such as 100 Hz doublet (KE: -18±18% and PF: -20±15%, P<0.01) and peak twitch (KE: -33±12%, P<0.001 and PF: -19±14%, P<0.01) were also altered in runners but not in controls. Post-MUM blood concentrations of creatine kinase (3719±3045 Ul·(1)), lactate dehydrogenase (1145±511 UI·L(-1)), C-Reactive Protein (13.1±7.5 mg·L(-1)) and myoglobin (449.3±338.2 µg·L(-1)) were higher (P<0.001) than at Pre- in runners but not in controls. Our findings revealed less neuromuscular fatigue, muscle damage and inflammation than in shorter MUMs. In conclusion, paradoxically, such extreme exercise seems to induce a relative muscle preservation process due likely to a protective anticipatory pacing strategy during the first half of MUM and sleep deprivation in the second half.
Resumo:
Purpose: To evaluate the sensitivity of the perfusion parameters derived from Intravoxel Incoherent Motion (IVIM) MR imaging to hypercapnia-induced vasodilatation and hyperoxygenation-induced vasoconstriction in the human brain. Materials and Methods: This study was approved by the local ethics committee and informed consent was obtained from all participants. Images were acquired with a standard pulsed-gradient spin-echo sequence (Stejskal-Tanner) in a clinical 3-T system by using 16 b values ranging from 0 to 900 sec/mm(2). Seven healthy volunteers were examined while they inhaled four different gas mixtures known to modify brain perfusion (pure oxygen, ambient air, 5% CO(2) in ambient air, and 8% CO(2) in ambient air). Diffusion coefficient (D), pseudodiffusion coefficient (D*), perfusion fraction (f), and blood flow-related parameter (fD*) maps were calculated on the basis of the IVIM biexponential model, and the parametric maps were compared among the four different gas mixtures. Paired, one-tailed Student t tests were performed to assess for statistically significant differences. Results: Signal decay curves were biexponential in the brain parenchyma of all volunteers. When compared with inhaled ambient air, the IVIM perfusion parameters D*, f, and fD* increased as the concentration of inhaled CO(2) was increased (for the entire brain, P = .01 for f, D*, and fD* for CO(2) 5%; P = .02 for f, and P = .01 for D* and fD* for CO(2) 8%), and a trend toward a reduction was observed when participants inhaled pure oxygen (although P > .05). D remained globally stable. Conclusion: The IVIM perfusion parameters were reactive to hyperoxygenation-induced vasoconstriction and hypercapnia-induced vasodilatation. Accordingly, IVIM imaging was found to be a valid and promising method to quantify brain perfusion in humans. © RSNA, 2012.
Resumo:
In the investigation of thin films of transition metal nitrides, an essential role is played by the accurate determination of their chemical composition. Actually the chemical composition depends on the deposition parameters and influences the optical properties. These relations are illustrated in thin films of TiNx and (Ti1-yVy)N-x deposited by reactive magnetron sputtering from composite targets of the elements. By variation of the nitrogen partial pressure and the target composition, different samples have been obtained. The chemical composition has been measured by electron probe microanalysis at low irradiation voltages. The optical properties are evaluated by ex-situ ellipsometry. Using the screened Drude model, they are correlated with the differences in composition. Adding vanadium or nitrogen in Ti-N is shown to have the same effect on the optical properties.
Resumo:
Mice from most inbred strains are resistant to infection with Leishmania major whereas mice from BALB strains are highly susceptible. Resistance and susceptibility result from the development of Th1 or Th2 cells, respectively. In this report, we document an IL-2 mRNA burst, preceding the reported early IL-4 response, in draining lymph nodes of susceptible mice infected with L. major. Neutralization of IL-2 during the first days of infection redirected Th1 cell maturation and resistance to L. major, through interference with the rapid IL-4 transcription in Leishmania homolog of mammalian RACK1 (LACK)-reactive CD4(+) cells. A burst of IL-2 transcripts also occurred in infected C57BL/6 mice that do not mount an early IL-4 response. However, although the LACK protein induced IL-2 transcripts in susceptible mice, it failed to trigger this response in resistant C57BL/6 mice. Reconstitution experiments using C.B.-17 SCID mice and LACK-reactive CD4(+) T cells from IL-2(-/-) BALB/c mice showed that triggering of the early IL-4 response required autocrine IL-2. Thus, in C57BL/6 mice, the inability of LACK-reactive CD4(+) T cells to express early IL-4 mRNA transcription, important for disease progression, appears due to an incapacity of these cells to produce IL-2.
Resumo:
Measurement of microvascular perfusion with Intravoxel Incoherent Motion (IVIM) MRI is gaining interest. Yet, the physiological influences on the IVIM perfusion parameters ("pseudo-diffusion" coefficient D*, perfusion fraction f, and flow related parameter fD*) remain insufficiently characterized. In this article, we hypothesize that D* and fD*, which depend on blood speed, should vary during the cardiac cycle. We extended the IVIM model to include time dependence of D* = D*(t), and demonstrate in the healthy human brain that both parameters D* and fD* are significantly larger during systole than diastole, while the diffusion coefficient D and f do not vary significantly. The results non-invasively demonstrate the pulsatility of the brain's microvasculature.
Resumo:
BACKGROUND: Activation of coagulation and fibrinolysis play a role in the pathophysiology of experimental arthritis. Objective: To determine the extent of activation of the coagulation and fibrinolytic pathways in different joint diseases in humans and to ascertain the factors that may influence fibrin deposition within the joint. METHODS: Plasma from normal subjects (controls, n= 21) and plasma and synovial fluid samples from patients with rheumatoid arthritis (RA; n = 64), osteoarthritis (OA; n = 29), spondyloarthropathy (SpA; n = 22) and crystal arthritis (CA; n = 25) were analyzed for the levels of TF (tissue factor) and tissue factor pathway inhibitor (TFPI) activities, thrombin-antithrombin III (TAT) complexes, and F1 + 2 (thrombin fragment), fibrin d-dimer and thrombin-activated fibrinolysis inhibitor (TAFI) antigenic levels. The measurements were analyzed by pairwise correlation with each other as well as with standard parameters of inflammation [C-reactive protein (CRP), joint leukocyte count]. Inter-group comparisons were performed to look for disease-specific differences. RESULTS: Compared with healthy controls, patients with joint diseases had higher levels of TAT, F1 + 2 and d-dimers in their plasma. In the synovial fluid, TF activity, TAT, d-dimers, and TAFI were significantly higher in inflammatory arthritides than in OA. The levels were highest in RA patients. In the plasma, TF activity was correlated with TAT and d-dimer levels with CRP, TFPI, and TAT. In the synovial fluid, TF activity correlated with plasma CRP levels, synovial fluid leukocyte count, and synovial TAT and TAFI levels. In addition, synovial d-dimers correlated with CRP, and synovial TAFI levels were correlated with synovial F1 + 2 and TAT. CONCLUSIONS: Activation of the coagulation and fibrinolytic cascades in the joint and in the circulation is evident in both inflammatory and degenerative joint diseases. Within the joint, inflammatory mechanisms leading to TF-mediated activation of the coagulation pathway and subsequent fibrin deposition is the most likely explanation for the observed findings. In the plasma, the link between inflammation (CRP increase) and TF activation is weak, and a non-TF-mediated mechanism of coagulation activation could explain these findings. RA is characterized by significantly higher levels of TAT in the synovial fluid and plasma than other arthritides. Although fibrinolytic activity is linked to inflammation, the increased amounts of TAFI in the joint, particularly in RA, may explain why fibrin formation is so prominent in this condition compared with other joint diseases.
Resumo:
In higher plants such as Arabidopsis thaliana, omega-3 trienoic fatty acids (TFAs), represented mainly by alpha-linolenic acid, serve as precursors of jasmonic acid (JA), a potent lipid signal molecule essential for defense. The JA-independent roles of TFAs were investigated by comparing the TFA- and JA-deficient fatty acid desaturase triple mutant (fad3-2 fad7-2 fad8 (fad3 fad7 fad8)) with the aos (allene oxide synthase) mutant that contains TFAs but is JA-deficient. When challenged with the fungus Botrytis, resistance of the fad3 fad7 fad8 mutant was reduced when compared with the aos mutant, suggesting that TFAs play a role in cell survival independently of being the precursors of JA. An independent genetic approach using the lesion mimic mutant accelerated cell death2 (acd2-2) confirmed the importance of TFAs in containing lesion spread, which was increased in the lines in which the fad3 fad7 fad8 and acd2-2 mutations were combined when compared with the aos acd2-2 lines. Malondialdehyde, found to result from oxidative TFA fragmentation during lesion formation, was measured by gas chromatography-mass spectrometry. Its levels correlated with the survival of the tissue. Furthermore, plants lacking TFAs overproduced salicylic acid (SA), hydrogen peroxide, and transcripts encoding several SA-regulated and SA biosynthetic proteins. The data suggest a physiological role for TFAs as sinks for reactive oxygen species.
Resumo:
Mitochondrial reactive oxygen species generation has been implicated in the pathophysiology of ischemia-reperfusion (I/R) injury; however, its exact role and its spatial-temporal relationship with inflammation are elusive. Herein we explore the spatial-temporal relationship of oxidative/nitrative stress and inflammatory response during the course of hepatic I/R and the possible therapeutic potential of mitochondrial-targeted antioxidants, using a mouse model of segmental hepatic ischemia-reperfusion injury. Hepatic I/R was characterized by early (at 2h of reperfusion) mitochondrial injury, decreased complex I activity, increased oxidant generation in the liver or liver mitochondria, and profound hepatocellular injury/dysfunction with acute proinflammatory response (TNF-α, MIP-1α/CCL3, MIP-2/CXCL2) without inflammatory cell infiltration, followed by marked neutrophil infiltration and a more pronounced secondary wave of oxidative/nitrative stress in the liver (starting from 6h of reperfusion and peaking at 24h). Mitochondrially targeted antioxidants, MitoQ or Mito-CP, dose-dependently attenuated I/R-induced liver dysfunction, the early and delayed oxidative and nitrative stress response (HNE/carbonyl adducts, malondialdehyde, 8-OHdG, and 3-nitrotyrosine formation), and mitochondrial and histopathological injury/dysfunction, as well as delayed inflammatory cell infiltration and cell death. Mitochondrially generated oxidants play a central role in triggering the deleterious cascade of events associated with hepatic I/R, which may be targeted by novel antioxidants for therapeutic advantage.
Resumo:
Whereas previous studies have shown that opening of the mitochondrial ATP-sensitive K(+) (mitoK(ATP)) channel protects the adult heart against ischemia-reperfusion injury, it remains to be established whether this mechanism also operates in the developing heart. Isolated spontaneously beating hearts from 4-day-old chick embryos were subjected to 30 min of anoxia followed by 60 min of reoxygenation. The chrono-, dromo-, and inotropic disturbances, as well as alterations of the electromechanical delay (EMD), reflecting excitation-contraction (E-C) coupling, were investigated. Production of reactive oxygen species (ROS) in the ventricle was determined using the intracellular fluorescent probe 2',7'-dichlorofluorescin (DCFH). Effects of the specific mitoK(ATP) channel opener diazoxide (Diazo, 50 microM) or the blocker 5-hydroxydecanoate (5-HD, 500 microM), the nitric oxide synthase (NOS) inhibitor N(G)-nitro-L-arginine methyl ester (L-NAME, 50 microM), the antioxidant N-(2-mercaptopropionyl)glycine (MPG, 1 mM), and the PKC inhibitor chelerythrine (Chel, 5 microM) on oxidative stress and postanoxic functional recovery were determined. Under normoxia, the baseline parameters were not altered by any of these pharmacological agents, alone or in combination. During the first 20 min of postanoxic reoxygenation, Diazo doubled the peak of ROS production and, interestingly, accelerated recovery of ventricular EMD and the PR interval. Diazo-induced ROS production was suppressed by 5-HD, MPG, or L-NAME, but not by Chel. Protection of ventricular EMD by Diazo was abolished by 5-HD, MPG, L-NAME, or Chel, whereas protection of the PR interval was abolished by L-NAME exclusively. Thus pharmacological opening of the mitoK(ATP) channel selectively improves postanoxic recovery of cell-to-cell communication and ventricular E-C coupling. Although the NO-, ROS-, and PKC-dependent pathways also seem to be involved in this cardioprotection, their interrelation in the developing heart can differ markedly from that in the adult myocardium.
Resumo:
Telomerase activity (TA) is detected in most human cancers but, with few exceptions, not in normal somatic cells. Little is known about TA in soft tissue tumors. We have examined a series of benign and malignant soft tissue tumors for TA using the telomerase repeat amplification protocol assay. Analysis of the expression of the human telomerase reverse transcriptase was also carried out using RT-PCR. TA was undetectable in benign lesions (15 of 15) and low-grade sarcomas (6 of 6) and was detectable in 50% (19 of 38) of intermediate-/high-grade sarcomas. Although the presence of TA in soft tissue tumors is synonymous with malignancy, it is neither a reliable method in making the distinction between reactive/benign and malignant (especially low-grade) lesions nor a reliable marker of tumor aggressiveness. Leiomyosarcomas and storiform/pleomorphic malignant fibrous histiocytomas rarely showed TA, irrespective of their grade. A strong correlation between human telomerase reverse transcriptase mRNA expression and TA was observed, supporting the close relationship between both parameters. No significant relationship was observed between proliferative activity (as assessed by MIB-1 immunolabeling) and TA. We verified that the absence of telomerase expression was not due to the presence of telomerase inhibitors and therefore alternative mechanism(s) for cell immortalization, yet to be determined, seem to be involved in the development and/or maintenance of some soft tissue sarcomas.