103 resultados para REGULATED ACTIN
Resumo:
Cultured human epidermal keratinocyte stem cells (holoclones) are crucial for regenerative medicine for burns and genetic disorders. In serial culture, holoclones progressively lose their proliferative capacity to become transient amplifying cells with limited growth (paraclones), a phenomenon termed clonal conversion. Although it negatively impacts the culture lifespan and the success of cell transplantation, little is known on the molecular mechanism underlying clonal conversion. Here, we show that holoclones and paraclones differ in their actin filament organization, with actin bundles distributed radially in holoclones and circumferentially in paraclones. Moreover, actin organization sets the stage for a differing response to epidermal growth factor (EGF), since EGF signalling induces a rapid expansion of colony size in holoclones and a significant reduction in paraclones. Furthermore, inhibition of PI3K or Rac1 in holoclones results in the reorganization of actin filaments in a pattern that is similar to that of paraclones. Importantly, continuous Rac1 inhibition in holoclones results in clonal conversion and reduction of growth potential. Together, our data connect loss of stem cells to EGF-induced colony dynamics governed by Rac1.
Resumo:
The S. pombe cdc15 gene is essential for cell division. cdc15ts mutants do not form a septum, but growth and nuclear division continue, leading to formation of multinucleate cells. The earliest step in septum formation and cytokinesis, rearrangement of actin to the center of the cell, is associated with appearance of hypophosphorylated cdc15p and formation of a cdc15p ring, which colocalizes with actin. Loss of cdc15p function impairs formation of the actin ring. The abundance of cdc15 mRNA varies through the cell division cycle, peaking in early mitosis before septation. Expression of cdc15 in G2-arrested cells induces actin rearrangement to the center of the cell. These data implicate cdc15p as a key element in mediating the cytoskeletal rearrangements required for cytokinesis.
Resumo:
The transcription regulation of many hormone genes is modulated by intracellular second messengers such as cAMP. The cAMP response element binding protein, CREB, binds to the 8 base pair CRE enhancer, TGACGTCA, that is found in the 5'-flank of certain genes including those for somatostatin and the alpha-subunit of human chorionic gonadotropin. The recent characterization of CREB and CREB-related cDNA clones, combined with Southwesterns and Northern blot analyses, reveals a family of transcription factors that dimerize via a leucine zipper motif and bind to the CRE through positively charged basic regions. The CREB cDNA encoding a 327 residue protein is transcriptionally activated via phosphorylation by protein kinases, including the cAMP-dependent protein kinase-A.
Resumo:
The protein Bcl10 contributes to adaptive and innate immunity through the assembly of a signaling complex that plays a key role in antigen receptor and FcR-induced NF-κB activation. Here we demonstrate that Bcl10 has an NF-κB-independent role in actin and membrane remodeling downstream of FcR in human macrophages. Depletion of Bcl10 impaired Rac1 and PI3K activation and led to an abortive phagocytic cup rich in PI(4,5)P(2), Cdc42, and F-actin, which could be rescued with low doses of F-actin depolymerizing drugs. Unexpectedly, we found Bcl10 in a complex with the clathrin adaptors AP1 and EpsinR. In particular, Bcl10 was required to locally deliver the vesicular OCRL phosphatase that regulates PI(4,5)P(2) and F-actin turnover, both crucial for the completion of phagosome closure. Thus, we identify Bcl10 as an early coordinator of NF-κB-mediated immune response with endosomal trafficking and signaling to F-actin remodeling.
Resumo:
P-glycoprotein (P-gly) is the transmembrane efflux pump responsible for multidrug resistance in tumor cells. The activity of P-gly in mature peripheral lymphocytes is lineage specific, with CD8+ T cells and natural killer (NK) cells expressing high levels as compared to CD4+ T cells and B cells. We have now investigated P-gly activity in immature and mature subsets of mouse thymocytes. Our data indicate that P-gly activity is undetectable in immature CD4-8- and CD4+8+ thymocyte subsets. Among mature thymocytes, P-gly activity is absent in the CD4+ subset but present in the more mature (HSAlow) fraction of CD8+ cells. Furthermore, while thymic CD4-8- T cell receptor (TCR) gamma delta cells have little P-gly activity, a minor subset of CD4-8- or CD4+ TCR alpha beta + thymocytes bearing the NK1.1 surface marker expresses high levels of P-gly activity. Collectively, our results indicate that P-gly activity arises late during thymus development and is expressed in a lineage-specific fashion.
Resumo:
Previous studies showed a fetal sheep liver extract (FSLE), in association with monophosphoryl lipid A, MPLA (a bioactive component of lipid A of LPS), could interact to induce the development of dendritic cells (DCs) which regulated production of Foxp3+ Treg. This interaction was associated with an altered gene expression both of distinct subsets of TLRs and of CD200Rs. Prior studies had suggested that major interacting components within FSLE were gamma-chain of fetal hemoglobin (Hgbgamma) and glutathione (GSH). We investigated whether differentiation/maturation of DCs in vitro in the presence of either GM-CSF or Flt3L to produce preferentially either immunogenic or tolerogenic DCs was itself controlled by an interaction between MPLA, GSH and Hgbgamma. At low (approximately 10 microg/ml) Hgbgamma concentrations, DCs developing in culture with GSH and MPLA produced optimal stimulation of allogeneic CTL cell responses in vitro (and enhanced skin graft rejection in vivo). At higher concentrations (>40 microg/ml Hgbgamma) and equivalent concentrations of MPLA and GSH, the DCs induce populations of Treg which can suppress the induction of allogeneic CTL and graft rejection in vivo. These different populations of DCs express different patterns of mRNAs for the CD200R family. Addition of anti-TLR or anti-MD-1 mAbs to DCs developing in this mixture (Hgbgamma+GSH+MPLA), suggests that one effect of (GSH+Hgbgamma) on MPLA stimulation may involve altered signaling through TLR4.
Resumo:
Plants are sessile and photo-autotrophic; their entire life cycle is thus strongly influenced by the ever-changing light environment. In order to sense and respond to those fluctuating conditions higher plants possess several families of photoreceptors that can monitor light from UV-B to the near infrared (far-red). The molecular nature of UV-B sensors remains unknown, red (R) and far-red (FR) light is sensed by the phytochromes (phyA-phyE in Arabidopsis) while three classes of UV-A/blue photoreceptors have been identified: cryptochromes, phototropins, and members of the Zeitlupe family (cry1, cry2, phot1, phot2, ZTL, FKF1, and LKP2 in Arabidopsis). Functional specialization within photoreceptor families gave rise to members optimized for a wide range of light intensities. Genetic and photobiological studies performed in Arabidopsis have shown that these light sensors mediate numerous adaptive responses (e.g., phototropism and shade avoidance) and developmental transitions (e.g., germination and flowering). Some physiological responses are specifically triggered by a single photoreceptor but in many cases multiple light sensors ensure a coordinated response. Recent studies also provide examples of crosstalk between the responses of Arabidopsis to different external factors, in particular among light, temperature, and pathogens. Although the different photoreceptors are unrelated in structure, in many cases they trigger similar signaling mechanisms including light-regulated protein-protein interactions or light-regulated stability of several transcription factors. The breath and complexity of this topic forced us to concentrate on specific aspects of photomorphogenesis and we point the readers to recent reviews for some aspects of light-mediated signaling (e.g., transition to flowering).
Resumo:
PURPOSE: We have investigated the expression and regulation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) in gastric cancer. EXPERIMENTAL DESIGN: Clinical gastric adenocarcinoma samples were analyzed by immunohistochemistry and quantitative real-time PCR for protein and mRNA expression of 15-PGDH and for methylation status of 15-PGDH promoter. The effects of interleukin-1beta (IL-1beta) and epigenetic mechanisms on 15-PGDH regulation were assessed in gastric cancer cell lines. RESULTS: In a gastric cancer cell line with a very low 15-PGDH expression (TMK-1), the 15-PGDH promoter was methylated and treatment with a demethylating agent 5-aza-2'-deoxycytidine restored 15-PGDH expression. In a cell line with a relatively high basal level of 15-PGDH (MKN-28), IL-1beta repressed expression of 15-PGDH mRNA and protein. This effect of IL-1beta was at least in part attributed to inhibition of 15-PGDH promoter activity. SiRNA-mediated knockdown of 15-PGDH resulted in strong increase of prostaglandin E(2) production in MKN-28 cells and increased cell growth of these cells by 31% in anchorage-independent conditions. In clinical gastric adenocarcinoma specimens, 15-PGDH mRNA levels were 5-fold lower in gastric cancer samples when compared with paired nonneoplastic tissues (n = 26) and 15-PGDH protein was lost in 65% of gastric adenocarcinomas (n = 210). CONCLUSIONS: 15-PGDH is down-regulated in gastric cancer, which could potentially lead to accelerated tumor progression. Importantly, our data indicate that a proinflammatory cytokine linked to gastric carcinogenesis, IL-1beta, suppresses 15-PGDH expression at least partially by inhibiting promoter activity of the 15-PGDH gene.
Resumo:
Starting from a biologically active recombinant DNA clone of exogenous unintegrated GR mouse mammary tumor virus, we have generated three subclones of PstI fragments of 1.45, 1.1, and 2.0 kb in the plasmid vector PBR322. The nucleotide sequence has been determined for the clone of 1.45 kb which includes almost the complete region of the long terminal repeat (LTR) plus an adjacent stretch of unique sequence DNA. A short region of the 2.0 kb clone, containing the beginning of the LTR, has also been sequenced. Starting with the A of an initiation codon outside the LTR, we detected an open reading frame of 960 nucleotides, potentially coding for a protein of 320 amino acids (36K). Two hundred nucleotides downstream from the termination codon, and approximately 25 nucleotides upstream from the presumptive initiation site of viral RNA synthesis, we found a promoter-like sequence. The sequence AGTAAA was detected approximately 15-20 nucleotides upstream from the 3' end of virion RNA and probably serves as a polyadenylation signal. The 1.45 kb PstI fragment has been transfected into Ltk- cells together with a plasmid containing the thymidine kinase gene of herpes simplex virus. The virus-specific RNA synthesis detected in a Tk+ cell clone was strongly stimulated by the addition of dexamethasone.
Resumo:
Fas, a death domain-containing member of the tumor necrosis factor receptor family and its ligand FasL have been predominantly studied with respect to their capability to induce cell death. However, a few studies indicate a proliferation-inducing signaling activity of these molecules too. We describe here a novel signaling pathway of FasL and the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) that triggers transcriptional activation of the proto-oncogene c-fos, a typical target gene of mitogenic pathways. FasL- and TRAIL-mediated up-regulation of c-Fos was completely dependent on the presence of Fas-associated death domain protein (FADD) and caspase-8, but caspase activity seemed to be dispensable as a pan inhibitor of caspases had no inhibitory effect. Upon overexpression of the long splice form of cellular FADD-like interleukin-1-converting enzyme (FLICE) inhibitory protein (cFLIP) in Jurkat cells, FasL- and TRAIL-induced up-regulation of c-Fos was almost completely blocked. The short splice form of FLIP, however, showed a rather stimulatory effect on c-Fos induction. Together these data demonstrate the existence of a death receptor-induced, FADD- and caspase-8-dependent pathway leading to c-Fos induction that is inhibited by the long splice form FLIP-L.
Resumo:
Macrophage migration inhibitory factor (MIF) is an important regulator of glucose homeostasis. In pancreatic beta-cells, MIF expression is regulated by glucose and its secretion potentiates the glucose-induced insulin secretion. The molecular mechanisms by which glucose mediates its effect on MIF expression are not elucidated. Herein, we report that incubating the differentiated insulin-secreting cell line INS-1 in high glucose concentration increases MIF transcriptional activity as well as the reporter gene activity driven by the -1033 to +63 bp fragment of the MIF promoter. A minimal region located between -187 and -98 bp of this promoter sequence contributes both to basal activity and glucose-responsiveness of the gene. Within this promoter region, two cis-binding sequences were identified by mobility shift assays and footprinting experiments. Both cis-elements interact with nuclear proteins expressed specifically in insulin-secreting cells. In conclusion, we identified a minimal region of the MIF promoter which contributes to the glucose stimulation of the mif gene in insulin-secreting cells.
Resumo:
* The 'in planta' visualization of F-actin in all cells and in all developmental stages of a plant is a challenging problem. By using the soybean heat inducible Gmhsp17.3B promoter instead of a constitutive promoter, we have been able to label all cells in various developmental stages of the moss Physcomitrella patens, through a precise temperature tuning of the expression of green fluorescent protein (GFP)-talin. * A short moderate heat treatment was sufficient to induce proper labeling of the actin cytoskeleton and to allow the visualization of time-dependent organization of F-actin structures without impairment of cell viability. * In growing moss cells, dense converging arrays of F-actin structures were present at the growing tips of protonema cell, and at the localization of branching. Protonema and leaf cells contained a network of thick actin cables; during de-differentiation of leaf cells into new protonema filaments, the thick bundled actin network disappeared, and a new highly polarized F-actin network formed. * The controlled expression of GFP-talin through an inducible promoter improves significantly the 'in planta' imaging of actin.
Resumo:
A long-standing controversy is whether autophagy is a bona fide cause of mammalian cell death. We used a cell-penetrating autophagy-inducing peptide, Tat-Beclin 1, derived from the autophagy protein Beclin 1, to investigate whether high levels of autophagy result in cell death by autophagy. Here we show that Tat-Beclin 1 induces dose-dependent death that is blocked by pharmacological or genetic inhibition of autophagy, but not of apoptosis or necroptosis. This death, termed "autosis," has unique morphological features, including increased autophagosomes/autolysosomes and nuclear convolution at early stages, and focal swelling of the perinuclear space at late stages. We also observed autotic death in cells during stress conditions, including in a subpopulation of nutrient-starved cells in vitro and in hippocampal neurons of neonatal rats subjected to cerebral hypoxia-ischemia in vivo. A chemical screen of ~5,000 known bioactive compounds revealed that cardiac glycosides, antagonists of Na(+),K(+)-ATPase, inhibit autotic cell death in vitro and in vivo. Furthermore, genetic knockdown of the Na(+),K(+)-ATPase α1 subunit blocks peptide and starvation-induced autosis in vitro. Thus, we have identified a unique form of autophagy-dependent cell death, a Food and Drug Administration-approved class of compounds that inhibit such death, and a crucial role for Na(+),K(+)-ATPase in its regulation. These findings have implications for understanding how cells die during certain stress conditions and how such cell death might be prevented.