90 resultados para RANDOM OPTIMIZATION
Resumo:
We advocate the use of a novel compressed sensing technique for accelerating the magnetic resonance image acquisition process, coined spread spectrum MR imaging or simply s2MRI. The method resides in pre-modulating the signal of interest by a linear chirp, resulting from the application of quadratic phase profiles, before random k-space under-sampling with uniform average density. The effectiveness of the procedure is theoretically underpinned by the optimization of the coherence between the sparsity and sensing bases. The application of the technique for single coil acquisitions is thoroughly studied by means of numerical simulations as well as phantom and in vivo experiments on a 7T scanner. The corresponding results suggest a favorable comparison with state-of-the-art variable density k-space under-sampling approaches.
Resumo:
In this paper, we study the average inter-crossing number between two random walks and two random polygons in the three-dimensional space. The random walks and polygons in this paper are the so-called equilateral random walks and polygons in which each segment of the walk or polygon is of unit length. We show that the mean average inter-crossing number ICN between two equilateral random walks of the same length n is approximately linear in terms of n and we were able to determine the prefactor of the linear term, which is a = (3 In 2)/(8) approximate to 0.2599. In the case of two random polygons of length n, the mean average inter-crossing number ICN is also linear, but the prefactor of the linear term is different from that of the random walks. These approximations apply when the starting points of the random walks and polygons are of a distance p apart and p is small compared to n. We propose a fitting model that would capture the theoretical asymptotic behaviour of the mean average ICN for large values of p. Our simulation result shows that the model in fact works very well for the entire range of p. We also study the mean ICN between two equilateral random walks and polygons of different lengths. An interesting result is that even if one random walk (polygon) has a fixed length, the mean average ICN between the two random walks (polygons) would still approach infinity if the length of the other random walk (polygon) approached infinity. The data provided by our simulations match our theoretical predictions very well.
Resumo:
BACKGROUND: Iterative reconstruction (IR) techniques reduce image noise in multidetector computed tomography (MDCT) imaging. They can therefore be used to reduce radiation dose while maintaining diagnostic image quality nearly constant. However, CT manufacturers offer several strength levels of IR to choose from. PURPOSE: To determine the optimal strength level of IR in low-dose MDCT of the cervical spine. MATERIAL AND METHODS: Thirty consecutive patients investigated by low-dose cervical spine MDCT were prospectively studied. Raw data were reconstructed using filtered back-projection and sinogram-affirmed IR (SAFIRE, strength levels 1 to 5) techniques. Image noise, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were measured at C3-C4 and C6-C7 levels. Two radiologists independently and blindly evaluated various anatomical structures (both dense and soft tissues) using a 4-point scale. They also rated the overall diagnostic image quality using a 10-point scale. RESULTS: As IR strength levels increased, image noise decreased linearly, while SNR and CNR both increased linearly at C3-C4 and C6-C7 levels (P < 0.001). For the intervertebral discs, the content of neural foramina and dural sac, and for the ligaments, subjective image quality scores increased linearly with increasing IR strength level (P ≤ 0.03). Conversely, for the soft tissues and trabecular bone, the scores decreased linearly with increasing IR strength level (P < 0.001). Finally, the overall diagnostic image quality scores increased linearly with increasing IR strength level (P < 0.001). CONCLUSION: The optimal strength level of IR in low-dose cervical spine MDCT depends on the anatomical structure to be analyzed. For the intervertebral discs and the content of neural foramina, high strength levels of IR are recommended.
Resumo:
We introduce disk matrices which encode the knotting of all subchains in circular knot configurations. The disk matrices allow us to dissect circular knots into their subknots, i.e. knot types formed by subchains of the global knot. The identification of subknots is based on the study of linear chains in which a knot type is associated to the chain by means of a spatially robust closure protocol. We characterize the sets of observed subknot types in global knots taking energy-minimized shapes such as KnotPlot configurations and ideal geometric configurations. We compare the sets of observed subknots to knot types obtained by changing crossings in the classical prime knot diagrams. Building upon this analysis, we study the sets of subknots in random configurations of corresponding knot types. In many of the knot types we analyzed, the sets of subknots from the ideal geometric configurations are found in each of the hundreds of random configurations of the same global knot type. We also compare the sets of subknots observed in open protein knots with the subknots observed in the ideal configurations of the corresponding knot type. This comparison enables us to explain the specific dispositions of subknots in the analyzed protein knots.
Resumo:
Individual-as-maximizing agent analogies result in a simple understanding of the functioning of the biological world. Identifying the conditions under which individuals can be regarded as fitness maximizing agents is thus of considerable interest to biologists. Here, we compare different concepts of fitness maximization, and discuss within a single framework the relationship between Hamilton's (J Theor Biol 7: 1-16, 1964) model of social interactions, Grafen's (J Evol Biol 20: 1243-1254, 2007a) formal Darwinism project, and the idea of evolutionary stable strategies. We distinguish cases where phenotypic effects are additive separable or not, the latter not being covered by Grafen's analysis. In both cases it is possible to define a maximand, in the form of an objective function phi(z), whose argument is the phenotype of an individual and whose derivative is proportional to Hamilton's inclusive fitness effect. However, this maximand can be identified with the expression for fecundity or fitness only in the case of additive separable phenotypic effects, making individual-as-maximizing agent analogies unattractive (although formally correct) under general situations of social interactions. We also feel that there is an inconsistency in Grafen's characterization of the solution of his maximization program by use of inclusive fitness arguments. His results are in conflict with those on evolutionary stable strategies obtained by applying inclusive fitness theory, and can be repaired only by changing the definition of the problem.
Exact asymptotics and limit theorems for supremum of stationary chi-processes over a random interval
Resumo:
Long polymers in solution frequently adopt knotted configurations. To understand the physical properties of knotted polymers, it is important to find out whether the knots formed at thermodynamic equilibrium are spread over the whole polymer chain or rather are localized as tight knots. We present here a method to analyze the knottedness of short linear portions of simulated random chains. Using this method, we observe that knot-determining domains are usually very tight, so that, for example, the preferred size of the trefoil-determining portions of knotted polymer chains corresponds to just seven freely jointed segments.
Resumo:
In the context of Systems Biology, computer simulations of gene regulatory networks provide a powerful tool to validate hypotheses and to explore possible system behaviors. Nevertheless, modeling a system poses some challenges of its own: especially the step of model calibration is often difficult due to insufficient data. For example when considering developmental systems, mostly qualitative data describing the developmental trajectory is available while common calibration techniques rely on high-resolution quantitative data. Focusing on the calibration of differential equation models for developmental systems, this study investigates different approaches to utilize the available data to overcome these difficulties. More specifically, the fact that developmental processes are hierarchically organized is exploited to increase convergence rates of the calibration process as well as to save computation time. Using a gene regulatory network model for stem cell homeostasis in Arabidopsis thaliana the performance of the different investigated approaches is evaluated, documenting considerable gains provided by the proposed hierarchical approach.
Resumo:
In a thermally fluctuating long linear polymeric chain in a solution, the ends, from time to time, approach each other. At such an instance, the chain can be regarded as closed and thus will form a knot or rather a virtual knot. Several earlier studies of random knotting demonstrated that simpler knots show a higher occurrence for shorter random walks than do more complex knots. However, up to now there have been no rules that could be used to predict the optimal length of a random walk, i.e. the length for which a given knot reaches its highest occurrence. Using numerical simulations, we show here that a power law accurately describes the relation between the optimal lengths of random walks leading to the formation of different knots and the previously characterized lengths of ideal knots of a corresponding type.
Resumo:
In this article we present a novel approach for diffusion MRI global tractography. Our formulation models the signal in each voxel as a linear combination of fiber-tract basis func- tions, which consist of a comprehensive set of plausible fiber tracts that are locally compatible with the measured MR signal. This large dictionary of candidate fibers is directly estimated from the data and, subsequently, efficient convex optimization techniques are used for recovering the smallest subset globally best fitting the measured signal. Experimen- tal results conducted on a realistic phantom demonstrate that our approach significantly reduces the computational cost of global tractography while still attaining a reconstruction quality at least as good as the state-of-the-art global methods.
Resumo:
A basic prerequisite for in vivo X-ray imaging of the lung is the exact determination of radiation dose. Achieving resolutions of the order of micrometres may become particularly challenging owing to increased dose, which in the worst case can be lethal for the imaged animal model. A framework for linking image quality to radiation dose in order to optimize experimental parameters with respect to dose reduction is presented. The approach may find application for current and future in vivo studies to facilitate proper experiment planning and radiation risk assessment on the one hand and exploit imaging capabilities on the other.
Resumo:
One evolutionary explanation for the success of sexual reproduction assumes that sex is an advantage in the coevolutionary arms race between pathogens and hosts. Accordingly, an important criterion in mate choice and maternal selection thereafter could be the allelic specificity at polymorphic loci involved in parasite-host interactions, e.g. the MHC (major histocompatibility complex). The MHC has been found to influence mate choice and selective abortions in mice and humans. However, it could also influence the fertilization process itself, i.e. (i) the oocyte's choice for the fertilizing sperm, and (ii) the outcome of the second meiotic division after the sperm has entered the egg. We tested both hypotheses in an in vitro fertilization experiment with two inbred mouse strains congenic for their MHC. The genotypes of the resulting blastocysts were determined by polymerase chain reaction. We found nonrandom MHC combinations in the blastocysts which may result from both possible choice mechanisms. The outcome changed significantly over time, indicating that a choice for MHC combinations during fertilization may be influenced by one or several external factors.