31 resultados para Proteinase


Relevância:

10.00% 10.00%

Publicador:

Resumo:

INTRODUCTION: Tissue factor (TF) activation of the coagulation proteases enhances inflammation in animal models of arthritis and endotoxemia, but the mechanism of this effect is not yet fully understood - in particular, whether this is primarily due to fibrin formation or through activation of protease activated receptors (PARs). METHODS: We induced extravascular inflammation by injection of recombinant soluble murine TF (sTF1-219) in the hind paw. The effects of thrombin inhibition, fibrinogen and platelet depletion were evaluated, as well as the effects of PAR deficiency using knockout mice deficient for each of the PARs. RESULTS: Injection of soluble TF provoked a rapid onset of paw swelling. Inflammation was confirmed histologically and by increased serum IL-6 levels. Inflammation was significantly reduced by depletion of fibrinogen (P < 0.05) or platelets (P = 0.015), and by treatment with hirudin (P = 0.04) or an inhibitor of activated factor VII (P < 0.001) compared with controls. PAR-4-deficient mice exhibited significantly reduced paw swelling (P = 0.003). In contrast, a deficiency in either PAR-1, PAR-2 or PAR-3 did not affect the inflammatory response to soluble TF injection. CONCLUSION: Our results show that soluble TF induces acute inflammation through a thrombin-dependent pathway and both fibrin deposition and platelet activation are essential steps in this process. The activation of PAR-4 on platelets is crucial and the other PARs do not play a major role in soluble TF-induced inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

SPINK5 (serine protease inhibitor Kazal-type 5) encodes the putative proteinase inhibitor LEKTI (lympho-epithelial Kazal-type related inhibitor). In skin, LEKTI expression is restricted to the stratum granulosum of the epidermis and the inner root sheath of hair follicles. Mutations that create premature termination codons in SPINK5 have been reported as the cause of Netherton syndrome (NS), a human autosomal recessive disorder characterized by congenital ichthyosis with defective cornification, a specific hair shaft defect known as trichorrexis invaginata or 'bamboo hair', and severe atopic manifestations, including atopic dermatitis and hayfever. Althought recombinant human LEKTI inhibits a battery of serine proteases including plasmin, trypsin, subtilisin A, cathepsin G, and elastase, the precise role of LEKTI in the physiopathology of NS remains unclear. Spink5−/− mice display a NS-like phenotype. Surprisingly, a psoriasis-like hyperplasia, basement membrane breakdown followed by evagination of spindle-shaped epidermal cells into the dermal compartment, and the presence of numerous sweat gland-like structures were also observed when the skin of Spink5−/− newborn mice, which die at birth, was transplanted onto the back of nude mice. Collectively, these observations suggest that LEKTI may play a role on cell proliferation and stem cell fate. Our current work aims at elucidating the mechanisms by which LEKTI impact these biological processes. Using keratinocyte stem cells obtained from NS patients, we have identified LEKTI as a regulator node in several signaling pathways involved in stem cell behavior.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary Interleukin-1beta (IL-1beta) is a potent inflammatory cytokine, which is implicated in acute and chronic inflammatory disorders. The activity of IL-1beta is regulated by the proteolytic cleavage of its inactive precursor resulting in the mature, bioactive form of the cytokine. Cleavage of the IL-1beta precursor is performed by the cysteine protease caspase-1, which is activated within protein complexes termed 'inflammasomes'. To date, four distinct inflammasomes have been described, based on different core receptors capable of initiating complex formation. Both the host and invading pathogens need to control IL-1beta production and this can be achieved by regulating inflammasome activity. However, we have, as yet, little understanding of the mechanisms of this regulation. In particular the negative feedbacks, which are critical for the host to limit collateral damage of the inflammatory response, remain largely unexplored. Recent exciting findings in this field have given us an insight into the potential of this research area in terms of opening up new therapeutic avenues for inflammatory disorders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The methylotrophic yeast Pichia pastoris is widely used for the expression of heterologous enzymes. While the purity of the desired expression product is of major importance for many applications, we found that recombinant enzymes produced in methanol medium were contaminated by a 37-kDa endogenous yeast protease. This enzyme was completely inhibited by phenylmethanesulfonyl fluoride (PMSF) but not by 1,10-phenanthroline, EDTA, and pepstatin A, suggesting the nature of a serine protease. Its secretion was abolished in P. pastoris strains GS115 and KM71 by specific mutagenesis of a subtilisin gene (SUB2) but not by inactivation of the gene encoding vacuolar proteinase B (PRB). Bioinformatic comparisons of Sub2 protein with subtilisins from other fungal genomes and phylogenetic analyses indicated that this enzyme is not an orthologue of the vacuolar protease cerevisin generally present in yeasts but is more closely related to another putative subtilisin found in a small number of yeast genomes. During growth of P. pastoris, Sub2 was produced as a secreted enzyme at a concentration of 10 microg/ml of culture supernatant after overexpression of the full-length SUB2 gene. During fermentative production of recombinant enzymes in methanol medium, 1 ml of P. pastoris culture supernatant was found to contain approximately 3 ng of Sub2, while the enzyme was not detected during growth in a medium containing glycerol as a carbon source. The mutant strain GS115-sub2 was subsequently used as a host for the production of recombinant proteases without endogenous subtilisin contamination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

AbstractText BACKGROUND: Profiling sperm DNA present on vaginal swabs taken from rape victims often contributes to identifying and incarcerating rapists. Large amounts of the victim's epithelial cells contaminate the sperm present on swabs, however, and complicate this process. The standard method for obtaining relatively pure sperm DNA from a vaginal swab is to digest the epithelial cells with Proteinase K in order to solubilize the victim's DNA, and to then physically separate the soluble DNA from the intact sperm by pelleting the sperm, removing the victim's fraction, and repeatedly washing the sperm pellet. An alternative approach that does not require washing steps is to digest with Proteinase K, pellet the sperm, remove the victim's fraction, and then digest the residual victim's DNA with a nuclease. METHODS: The nuclease approach has been commercialized in a product, the Erase Sperm Isolation Kit (PTC Labs, Columbia, MO, USA), and five crime laboratories have tested it on semen-spiked female buccal swabs in a direct comparison with their standard methods. Comparisons have also been performed on timed post-coital vaginal swabs and evidence collected from sexual assault cases. RESULTS: For the semen-spiked buccal swabs, Erase outperformed the standard methods in all five laboratories and in most cases was able to provide a clean male profile from buccal swabs spiked with only 1,500 sperm. The vaginal swabs taken after consensual sex and the evidence collected from rape victims showed a similar pattern of Erase providing superior profiles. CONCLUSIONS: In all samples tested, STR profiles of the male DNA fractions obtained with Erase were as good as or better than those obtained using the standard methods.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In most pathology laboratories worldwide, formalin-fixed paraffin embedded (FFPE) samples are the only tissue specimens available for routine diagnostics. Although commercial kits for diagnostic molecular pathology testing are becoming available, most of the current diagnostic tests are laboratory-based assays. Thus, there is a need for standardized procedures in molecular pathology, starting from the extraction of nucleic acids. To evaluate the current methods for extracting nucleic acids from FFPE tissues, 13 European laboratories, participating to the European FP6 program IMPACTS (www.impactsnetwork.eu), isolated nucleic acids from four diagnostic FFPE tissues using their routine methods, followed by quality assessment. The DNA-extraction protocols ranged from homemade protocols to commercial kits. Except for one homemade protocol, the majority gave comparable results in terms of the quality of the extracted DNA measured by the ability to amplify differently sized control gene fragments by PCR. For array-applications or tests that require an accurately determined DNA-input, we recommend using silica based adsorption columns for DNA recovery. For RNA extractions, the best results were obtained using chromatography column based commercial kits, which resulted in the highest quantity and best assayable RNA. Quality testing using RT-PCR gave successful amplification of 200 bp-250 bp PCR products from most tested tissues. Modifications of the proteinase-K digestion time led to better results, even when commercial kits were applied. The results of the study emphasize the need for quality control of the nucleic acid extracts with standardised methods to prevent false negative results and to allow data comparison among different diagnostic laboratories.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The major envelope antigen of vaccinia virus is an acylated protein of M(r) 37,000 (p37K) which is required for the formation of extracellular enveloped virions (EEV). Despite its important role in the wrapping process, p37K has not been studied in much detail. In order to better characterize this protein we have undertaken a detailed biochemical analysis. Sodium carbonate treatment showed that p37K is tightly bound to the viral envelope. Its resistance to proteinase K digestion indicates that it is not exposed on the surface of EEV but lines the inner side of the envelope. Since p37K does not contain a signal peptide characteristic of most membrane proteins, we examined the possibility that the protein acquires its membrane affinity through the addition of fatty acids. Indeed, Triton X-114 phase partitioning experiments demonstrated that p37K is hydrophobic when acylated, but hydrophilic in the absence of fatty acids. Three other viral proteins have been shown to be required for virus envelopment and release from the host cell and we therefore tested whether p37K interacts with viral proteins. In EEV and in absence of reducing agents, an 80-kDa complex reacting with an anti-37K antiserum was found. Analysis of this complex showed that it most likely consists of a p37K homodimer. Interestingly, only a small amount of p37K occurs as a complex, most of it is present in the viral envelope as monomers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: Elevated plasma levels of the elastase alpha 1-proteinase inhibitor complex (E-alpha 1 PI) have been proposed as a marker of bacterial infection and neutrophil activation. Liberation of elastase from neutrophils after collection of blood may cause falsely elevated results. Collection methods have not been validated for critically ill neonates and children. We evaluated the influence of preanalytical methods on E-alpha 1 PI results including the recommended collection into EDTA tubes. DESIGN AND METHODS: First, we compared varying acceleration speeds and centrifugation times. Centrifugation at 1550 g for 3 min resulted in reliable preparation of leukocyte free plasma. Second, we evaluated all collection tubes under consideration for absorption of E-alpha 1 PI. Finally, 12 sets of samples from healthy adults and 42 sets obtained from critically ill neonates and children were distributed into the various sampling tubes. Samples were centrifuged within 15 min of collection and analyzed with a new turbidimetric assay adapted to routine laboratory analyzers. RESULTS: One of the two tubes containing a plasma-cell separation gel absorbed 22.1% of the E-alpha 1 PI content. In the remaining tubes without absorption of E-alpha 1 PI no differences were observed for samples from healthy adult patients. However, in samples from critically ill neonates or children, significantly higher results were obtained for plain Li-heparin tubes (mean = 183 micrograms/L), EDTA tubes (mean = 93 micrograms/L), and citrate tubes (mean = 88.5 micrograms/L) than for the Li-hep tube with cell-plasma separation gel and no absorption of E-alpha 1 PI (mean = 62.4 micrograms/L, p < 0.01). CONCLUSION: Contrary to healthy adults, E-alpha 1 PI results in plasma samples from critically ill neonates and children depend on the type of collection tube.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent publications have demonstrated that the protease caspase-1 is responsible for the processing of pro-interleukin 18 (IL-18) into the active form. Studies on cell lines and murine macrophages have shown that the bacterial invasion factor SipB activates caspase-1, triggering cell death. Thus, we investigated the role of SipB in the activation and release of IL-18 in human alveolar macrophages (AM), which are the first line of defense against inhaled pathogens. Under steady-state conditions, AM are a more important source of IL-18 than are dendritic cells (DC) and monocytes. Cytokine production by AM and DC was compared after both types of cells had been infected with a virulent strain of Salmonella enterica serovar Typhimurium and an isogenic sipB mutant, which were used as an infection model. Infection with virulent Salmonella led to marked cell death with features of apoptosis while both intracellular activation and release of IL-18 were demonstrated. In contrast, the sipB mutant did not induce such cell death or the release of active IL-18. The specific caspase-1 inhibitor Ac-YVAD-CMK blocked the early IL-18 release in AM infected with the virulent strain. However, the type of Salmonella infection did not differentially regulate IL-18 gene expression. We concluded that the bacterial virulence factor SipB plays an essential posttranslational role in the intracellular activation of IL-18 and the release of the cytokine in human AM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary : The skin is a complex organ that protects the body against entry of pathogens and supplies a relatively dry and impermeable barrier to water loss. This barrier function is mainly provided by the epidermis, which is the outermost layer of the skin. Serine proteases are involved in skin physiology and it is known that mutations or alterations in their expression can lead to skin diseases. In order to investigate the importance of the regulated expression of CAPI/Prss8, a membrane bound serine protease expressed in the epidermis, we developed transgenic mice ectopically expressing CAPI/Prss8 in the skin. These animals exhibited a phenotype characterized by scaly skin, epidermal hypertrophy, inflammation and scratching behavior. This phenotype could be completely abolished in mice lacking the proteinase activated receptor 2 (PAR2) revealing PAR2 as a potential in vivo downstream target of CAP 1 /Prss8. We could also provide evidence of a CAP1 /Prss8 function independent of its catalytic activity. Additionally, mice ectopically expressing PAR2 in the skin developed a skin phenotype very similar to CAPI/Prss8 transgenic animals, supporting the hypothesis of PAR2 activation by CAPI/Prss8. We could furthermore demonstrate an inhibitory effect of the serine protease inhibitor nexin-I on CAPI/Prss8, since nexin-1 transgenic expression negated the skin phenotype observed in CAPI/Prss8 transgenic mice. CAP1/Prss8 and PAR2 transgenic animals, and the understanding of the interaction between CAPl/Prss8 and PAR2, can be helpful in developing potential CAPI/Prss8 and PAR2 inhibitory molecules that may be used as drugs to treat ichthyoses-like skin diseases. Résumé : La peau est un organe complexe qui protège le corps contre l'entrée des pathogènes et forme une barrière imperméable qui empêche la déshydratation. Cette fonction de barrière est surtout fournie par l'épiderme, la couche la plus superficielle de la peau. Le bon fonctionnement de cet organe est permis, entre autres, par les protéases à sérine qui sont des enzymes dont l'altération peut causer des maladies de la peau. Pour étudier l'importance de la régulation de CAP1/Prss8, une protéase à sérine exprimée au niveau de l'épiderme, des souris génétiquement modifiées, dans lesquelles CAP1/Prss8 est exprimé d'une manière ectopique dans la peau, ont été générées. Les animaux transgéniques pour CAP1/Prss8 présentent une peau squameuse, un épiderme hypertrophique, des processus inflammatoires et se grattent. Ce phénotype a pu être complètement guéri lorsque le gène de PAR2, un récepteur qui règle l'activité des cellules de l'épiderme, est inactivé chez la souris. Ceci montre que PAR2 est une cible de CAP1/Prss8 dans le système étudié. Des études expérimentales suggèrent de plus que l'effet de CAP1/Prss8 dans ce modèle ne dépend pas de son activité enzymatique. En dernière analyse, il a été démontré que l'expression transgénique de nexin-1, un inhibiteur des protéases à sérine exprimé dans la peau, a la capacité d'améliorer la peau squameuse et l'épiderme hypertrophique causés par CAP1/Prss8 transgénique. Les animaux transgéniques pour CAP1/Prss8 et PAR2, et la compréhension du mécanisme d'interaction entre eux, pourraient aider à développer et à tester des molécules inhibitrices de CAP1 /Prss8 et PARI qui pourraient alors être utilisées comme médicaments pour traiter des maladies de la peau comme les ichthyoses.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The induction of apoptosis of virus-infected cells is an important host defense mechanism against invading pathogens. Some viruses express anti-apoptotic proteins that efficiently block apoptosis induced by death receptors or in response to stress signaled through mitochondria. Viral interference with host cell apoptosis leads to enhanced viral replication and may promote cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: Abdominal aortic aneurysms (AAAs) expand because of aortic wall destruction. Enrichment in Vascular Smooth Muscle Cells (VSMCs) stabilizes expanding AAAs in rats. Mesenchymal Stem Cells (MSCs) can differentiate into VSMCs. We have tested the hypothesis that bone marrow-derived MSCs (BM-MSCs) stabilizes AAAs in a rat model. MATERIAL AND METHODS: Rat Fischer 344 BM-MSCs were isolated by plastic adhesion and seeded endovascularly in experimental AAAs using xenograft obtained from guinea pig. Culture medium without cells was used as control group. The main criteria was the variation of the aortic diameter at one week and four weeks. We evaluated the impact of cells seeding on inflammatory response by immunohistochemistry combined with RT-PCR on MMP9 and TIMP1 at one week. We evaluated the healing process by immunohistochemistry at 4 weeks. RESULTS: The endovascular seeding of BM-MSCs decreased AAA diameter expansion more powerfully than VSMCs or culture medium infusion (6.5% ± 9.7, 25.5% ± 17.2 and 53.4% ± 14.4; p = .007, respectively). This result was sustained at 4 weeks. BM-MSCs decreased expression of MMP-9 and infiltration by macrophages (4.7 ± 2.3 vs. 14.6 ± 6.4 mm(2) respectively; p = .015), increased Tissue Inhibitor Metallo Proteinase-1 (TIMP-1), compared to culture medium infusion. BM-MSCs induced formation of a neo-aortic tissue rich in SM-alpha active positive cells (22.2 ± 2.7 vs. 115.6 ± 30.4 cells/surface units, p = .007) surrounded by a dense collagen and elastin network covered by luminal endothelial cells. CONCLUSIONS: We have shown in this rat model of AAA that BM-MSCs exert a specialized function in arterial regeneration that transcends that of mature mesenchymal cells. Our observation identifies a population of cells easy to isolate and to expand for therapeutic interventions based on catheter-driven cell therapy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It has been suggested that determination of the neutrophil elastase alpha1-proteinase inhibitor complex (E-alpha1PI) improves the diagnosis of bacterial infection in newborns. We evaluated the use of E-alpha1PI measurements in 143 newborns, consecutively admitted to a tertiary intensive care unit, employing a new random access assay and a sampling procedure that minimises post-collection artefacts. The 95% range for noninfected newborns was 20-110 microg/l up to the 5th day of life and 20-85 microg/l thereafter. The sensitivity as to the diagnosis of culture-proven bloodstream infection was 80% for E-alpha1PI, 86% for the immature to total neutrophil ratio, 64% for C-reactive protein and 37% for the total white blood cell count. The corresponding specificity amounted to 97%, 85%, 85% and 86%, respectively. E-alpha1PI increases preceded elevations of C-reactive protein by 18 h. Like C-reactive protein, E-alpha1PI levels did not distinguish between bloodstream infection and non-bacterial inflammatory responses. Results of E-alpha1PI became available within 1 h of collection and usually 2-3 h before manual leucocyte counts. CONCLUSION: Determination of neutrophil elastase alpha1-proteinase inhibitor levels yields diagnostic advantages comparable to those of manual differential counts but provide faster turnaround times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The induction of plant defences and their subsequent suppression by insects is thought to be an important factor in the evolutionary arms race between plants and herbivores. Although insect oral secretions (OS) contain elicitors that trigger plant immunity, little is known about the suppressors of plant defences. The Arabidopsis thaliana transcriptome was analysed in response to wounding and OS treatment. The expression of several wound-inducible genes was suppressed after the application of OS from two lepidopteran herbivores, Pieris brassicae and Spodoptera littoralis. This inhibition was correlated with enhanced S. littoralis larval growth, pointing to an effective role of insect OS in suppressing plant defences. Two genes, an ERF/AP2 transcription factor and a proteinase inhibitor, were then studied in more detail. OS-induced suppression lasted for at least 48 h, was independent of the jasmonate or salicylate pathways, and was not due to known elicitors. Interestingly, insect OS attenuated leaf water loss, suggesting that insects have evolved mechanisms to interfere with the induction of water-stress-related defences.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

It is becoming clear that "apoptotic" caspases can effect cellular processes other than cell death. A recent paper in Cell points to a novel role of the Drosophila caspase inhibitor DIAP1 as a determinant of cell migration.