224 resultados para Prostatic Specific Antigen
Resumo:
AIMS: Experimental autoimmune myocarditis (EAM) model mirrors important mechanisms of inflammatory dilated cardiomyopathy (iDCM). In EAM, inflammatory CD133(+) progenitors are a major cellular source of cardiac myofibroblasts in the post-inflammatory myocardium. We hypothesized that exogenous delivery of macrophage-colony-stimulating factor (M-CSF) can stimulate macrophage lineage differentiation of inflammatory progenitors and, therefore, prevent their naturally occurring myofibroblast fate in EAM. METHODS AND RESULTS: EAM was induced in wild-type (BALB/c) and nitric oxide synthase 2-deficient (Nos2(-/-)) mice and CD133(+) progenitors were isolated from inflamed hearts. In vitro, M-CSF converted inflammatory CD133(+) progenitors into nitric oxide-producing F4/80(+) macrophages and prevented transforming growth factor-β-mediated myofibroblast differentiation. Importantly, only a subset of heart-infiltrating CD133(+) progenitors expresses macrophage-specific antigen F4/80 in EAM. These CD133(+)/F4/80(hi) cells show impaired myofibrogenic potential compared with CD133(+)/F4/80(-) cells. M-CSF treatment of wild-type mice with EAM at the peak of disease markedly increased CD133(+)/F4/80(hi) cells in the myocardium, and CD133(+) progenitors isolated from M-CSF-treated mice failed to differentiate into myofibroblasts. In contrast, M-CSF was not effective in converting CD133(+) progenitors from inflamed hearts of Nos2(-/-) mice into macrophages, and M-CSF treatment did not result in increased CD133(+)/F4/80(hi) cell population in hearts of Nos2(-/-) mice. Accordingly, M-CSF prevented post-inflammatory fibrosis and left ventricular dysfunction in wild-type but not in Nos2(-/-) mice. CONCLUSION: Active and NOS2-dependent induction of macrophage lineage differentiation abrogates the myofibrogenic potential of heart-infiltrating CD133(+) progenitors. Modulating the in vivo differentiation fate of specific progenitors might become a novel approach for the treatment of inflammatory heart diseases.
Resumo:
PURPOSE: The EGF receptor (EGFR) is overexpressed in the majority of metastatic castration-resistant prostate cancers (mCRPC) and might represent a valid therapeutic target. The combination of docetaxel and cetuximab, the monoclonal antibody against EGFR, has not been tested in patients with prostate cancer. EXPERIMENTAL DESIGN: Patients with mCRPC progressing during or within 90 days after at least 12 weeks of docetaxel were included in this phase II trial. Treatment consisted of docetaxel (75 mg/m(2) every 3 weeks or 35 mg/m(2) on days 1, 8, 15 every 4 weeks) in combination with cetuximab (400 mg/m(2) on day 1 and then 250 mg/m(2) weekly). The primary endpoint was progression-free survival (PFS) at 12 weeks defined as the absence of prostate-specific antigen (PSA), radiographic, or clinical progression. Evaluation of known biomarkers of response and resistance to cetuximab (EGFR, PTEN, amphiregulin, epiregulin) was conducted. RESULTS: Thirty-eight patients were enrolled at 15 Swiss centers. Median age was 68 years and median PSA was 212 ng/mL. PFS at 12 weeks was 34% [95% confidence interval (CI), 19%-52%], PFS at 24 weeks was 20%, and median overall survival (OS) was 13.3 months (95% CI, 7.3-15.4). Seven patients (20%) had a confirmed ≥ 50% and 11 patients (31%) a confirmed ≥ 30% PSA decline. About 47% of enrolled patients experienced grade 3 and 8% grade 4 toxicities. A significantly improved PFS was found in patients with overexpression of EGFR and persistent activity of PTEN. CONCLUSIONS: EGFR inhibition with cetuximab might improve the outcome of patients with mCRPC. A potential correlation between EGFR overexpression, persistent expression of PTEN, and EGFR inhibition should be investigated further.
Resumo:
Human glandular kallikrein 2 (hK2) is a trypsin-like serine protease expressed predominantly in the prostate epithelium. Recently, hK2 has proven to be a useful marker that can be used in combination with prostate specific antigen for screening and diagnosis of prostate cancer. The cleavage by hK2 of certain substrates in the proteolytic cascade suggest that the kallikrein may be involved in prostate cancer development; however, there has been very little other progress toward its biochemical characterization or elucidation of its true physiological role. In the present work, we adapt phage substrate technology to study the substrate specificity of hK2. A phage-displayed random pentapeptide library with exhaustive diversity was generated and then screened with purified hK2. Phages displaying peptides susceptible to hK2 cleavage were amplified in eight rounds of selection and genes encoding substrates were transferred from the phage to a fluorescent system using cyan fluorescent protein (derived from green fluorescent protein) that enables rapid determination of specificity constants. This study shows that hK2 has a strict preference for Arg in the P1 position, which is further enhanced by a Ser in P'1 position. The scissile bonds identified by phage display substrate selection correspond to those of the natural biological substrates of hK2, which include protein C inhibitor, semenogelins, and fibronectin. Moreover, three new putative hK2 protein substrates, shown elsewhere to be involved in the biology of the cancer, have been identified thus reinforcing the importance of hK2 in prostate cancer development.
Resumo:
Although evidence is accumulating that mothers can transfer antibodies to their offspring, little is known about the consequences of such a transfer to the offspring immune system. Because maternal antibodies are effective only during a short period of time after their transfer to offspring, one hypothesis is that maternal antibodies provides a transitory antigen-specific protection to offspring, thus lessening the need for offspring to mount their own humoral immune response towards these specific antigens. In birds, this scenario predicts that offspring immune response towards a specific antigen is inhibited to a larger extent in hatchlings than in older nestlings. We tested this hypothesis in tawny owls Strix aluco by cross-fostering clutches between nests and then challenging siblings with a vaccine either two times (at 4- and 11-d-old) or only one time at 11-d-old to compare the strength of the humoral response between nestlings born from mothers with naturally high and low levels of antibodies against this vaccine. Because maternal antibodies are expected to be effective only during a short period of time after hatching, we predict that maternal antibodies should inhibit the immune response of nestlings vaccinated from the fourth day after hatching more than in nestlings vaccinated only at a later age. As expected, the inhibitory effect of maternal antibodies was stronger in nestlings vaccinated soon after hatching than in siblings injected at a later age. Therefore, in wild avian populations pre-hatching maternal effects may confer offspring with a transitory immune protection in the first days following hatching.
Resumo:
BACKGROUND: Accurate staging is essential to determine the correct management of patients diagnosed with prostate cancer. We assess the accuracy of 3T multiparametric magnetic resonance imaging (MRI) with endorectal coil (3TemMRI) in detecting prostate cancer local extension. METHODS: We retrospectively reviewed charts from January 2008 to July 2012 from all patients undergoing radical prostatectomy. Patients were only included if 3TemMRI and radical prostatectomy were performed at our institution. Based on the presence of extracapsular extension (ECE) at 3TemMRI, prostate cancer was dichotomized into locally advanced or organ-confined disease. The accuracy of 3TemMRI local staging was then evaluated using definitive pathology as a reference. RESULTS: Overall, 177 radical prostatectomies were performed within the timeframe. After applying exclusion criteria, 60 patients were included in the final analysis. The mean patient age was 67 ± 7 (standard deviation) years. Mean prostate-specific antigen value was 12.7 ± 12.7 ng/L. Based on preoperative characteristics, we considered 38 of the 60 patients (63%) patients high risk. 3TemMRI identified an organ-confined tumour in 46 patients and locally advanced disease in 14 patients. When correlated to final pathology, 3TemMRI specificity, sensitivity, negative and positive predictive values, and accuracy in detecting locally advanced prostate cancer were 90%, 35%, 57%, 79% and 62%, respectively. INTERPRETATION: This study shows that the use of preoperative 3TemMRI can be used to identify organ-confined prostate cancer when locally advanced disease is suspected.
Resumo:
Leishmania guyanensis (L.g.)-specific CD8+ T cells can be isolated from PBMC of subjects who have never been previously exposed to Leishmania. Cells that produce IFN-gamma in response to live L.g. are generated from naive CD45RA+CD8+ T cells. The generation of L.g.-specific CD8+ T cells requires the presence of whole L.g. or UV-irradiated parasite but not the soluble antigens from L.g. promastigotes. The IFN-gamma-producing T cells recognize a specific antigen, the Leishmania homologue of receptors of activated C kinases (LACK) and this antigen but not live L.g. can produce a strong IL-10 response in CD45RA-CD4+ memory T cells from naive subjects. A single epitope (amino acid 156-173) is found to induce the IL-10 synthesis. While the IFN-gamma-producing cells are present among CD45RA+CD8+ T cells that are CD62L-CDR7- and CLA-, the LACK-reactive IL-10-producing cells are CD4+ T cells that are CD62L+CCR7- and CLA-.
Resumo:
PURPOSE: The natural history of prostate cancer might be driven by the index lesion. We determined the percent of men in whom the index lesion could be defined using transperineal template prostate mapping biopsies. MATERIALS AND METHODS: Included in study were consecutive men undergoing transperineal template prostate mapping biopsies with biopsies grouped into 20 zones. Men with clinically significant disease in only 1 prostate area were considered to have an identifiable index lesion. We evaluated the impact of using 2 definitions of clinically significant disease (Gleason grade pattern 4 and/or lesion volume 0.5 cc or greater) and 2 clustering rules (stringent and tolerant) to define the index lesion. RESULTS: Included in study were 391 men with a median age of 62 years (IQR 58-67) and a median prostate specific antigen of 6.9 ng/ml (IQR 4.8-10.0). Of the men 269 (69%) were previously diagnosed with prostate cancer. By deploying a median of 1.2 cores per ml (IQR 0.9-1.7) cancer was diagnosed in 82.9% of the men (324 of 391) with a median of 6 positive cores (IQR 2-9), a median maximum cancer core length of 5 mm (IQR 3-8) and a total cancer core length per zone of 7 mm (IQR 3-13). Insignificant disease was found in 26.3% to 42.9% of cases. When a stringent spatial relationship was used to define individual lesions, 44.4% to 54.6% of patients had 1 index lesion and 12.7% to 19.1% had more than 1 area with clinically significant disease. These proportions changed to 46.6% to 59.2% and 10.5% to 14.5%, respectively, when less stringent spatial clustering was applied. CONCLUSIONS: Transperineal template prostate mapping biopsies enable the index lesion to be localized in most men with clinically significant disease. This information may be important to select appropriate candidates for targeted therapy and to plan a tailored treatment strategy in men undergoing radical therapy.
Resumo:
Aberrant blood vessels enable tumor growth, provide a barrier to immune infiltration, and serve as a source of protumorigenic signals. Targeting tumor blood vessels for destruction, or tumor vascular disruption therapy, can therefore provide significant therapeutic benefit. Here, we describe the ability of chimeric antigen receptor (CAR)-bearing T cells to recognize human prostate-specific membrane antigen (hPSMA) on endothelial targets in vitro as well as in vivo. CAR T cells were generated using the anti-PSMA scFv, J591, and the intracellular signaling domains: CD3ζ, CD28, and/or CD137/4-1BB. We found that all anti-hPSMA CAR T cells recognized and eliminated PSMA(+) endothelial targets in vitro, regardless of the signaling domain. T cells bearing the third-generation anti-hPSMA CAR, P28BBζ, were able to recognize and kill primary human endothelial cells isolated from gynecologic cancers. In addition, the P28BBζ CAR T cells mediated regression of hPSMA-expressing vascular neoplasms in mice. Finally, in murine models of ovarian cancers populated by murine vessels expressing hPSMA, the P28BBζ CAR T cells were able to ablate PSMA(+) vessels, cause secondary depletion of tumor cells, and reduce tumor burden. Taken together, these results provide a strong rationale for the use of CAR T cells as agents of tumor vascular disruption, specifically those targeting PSMA. Cancer Immunol Res; 3(1); 68-84. ©2014 AACR.
Resumo:
Retroviral transfer of T cell antigen receptor (TCR) genes selected by circumventing tolerance to broad tumor- and leukemia-associated antigens in human leukocyte antigen (HLA)-A*0201 (A2.1) transgenic (Tg) mice allows the therapeutic reprogramming of human T lymphocytes. Using a human CD8 x A2.1/Kb mouse derived TCR specific for natural peptide-A2.1 (pA2.1) complexes comprising residues 81-88 of the human homolog of the murine double-minute 2 oncoprotein, MDM2(81-88), we found that the heterodimeric CD8 alpha beta coreceptor, but not normally expressed homodimeric CD8 alpha alpha, is required for tetramer binding and functional redirection of TCR- transduced human T cells. CD8+T cells that received a humanized derivative of the MDM2 TCR bound pA2.1 tetramers only in the presence of an anti-human-CD8 anti-body and required more peptide than wild-type (WT) MDM2 TCR+T cells to mount equivalent cytotoxicity. They were, however, sufficiently effective in recognizing malignant targets including fresh leukemia cells. Most efficient expression of transduced TCR in human T lymphocytes was governed by mouse as compared to human constant (C) alphabeta domains, as demonstrated with partially humanized and murinized TCR of primary mouse and human origin, respectively. We further observed a reciprocal relationship between the level of Tg WT mouse relative to natural human TCR expression, resulting in T cells with decreased normal human cell surface TCR. In contrast, natural human TCR display remained unaffected after delivery of the humanized MDM2 TCR. These results provide important insights into the molecular basis of TCR gene therapy of malignant disease.
Resumo:
RESUME Nous n'avons pas de connaissance précise des facteurs à l'origine de l'hétérogénéité phénotypique des cellules T CD4 mémoires. Une troisième population phénotypique des cellules T CD4 mémoires, caractérisée par les marqueurs CD45RA+CCR7- a été identifiée dans cette étude. Cette population présente un état de différentiation avancée, comme en témoigne son histoire de réplication, ainsi que sa capacité de prolifération homéostatique. Les réponses des cellules T CD4 mémoires à différentes conditions de persistance et charge antigénique ont trois patterns phénotypiques différents, caractérisés par les marqueurs CD45RA et CCR7. La réponse CD4 mono -phénotypique CD45RA-CCR7+ ou CD45RA- CCR7- est associée à des conditions d'élimination de l'antigène (telle la réponse CD4 tétanos spécifique) ou à des conditions de persistance antigénique et de virémie élevée (telle la réponse HIV chronique ou la primo-infection CMV) respectivement. D'autre part, les réponses T CD4 multi -phénotypiques CD45RA-CCR7+ sont associées à des conditions d'exposition antigénique prolongée et de faible virémie (telles les infections CMV, EBV et HSV ou les infections HIV chez les long term non progressons). La réponse mono -phénotypique CD45RA- CCR7+ est propre aux cellules T CD4 secrétant de IL2, définies également comme centrales mémoires, la réponse CD45RA- CCR7- aux cellules T CD4 secrétant de l'IFNγ et finalement la réponse mufti-phénotypique aux cellules T CD4 secrétant à la fois de l'IL2 et de l' IFNγ. En conclusion, ces résultats témoignent d'une régulation de l'hétérogénéité phénotypique par l'exposition et la charge antigénique. ABSTRACT The factors responsible for the phenotypic heterogeneity of memory CD4 T cells are unclear. In the present study, we have identified a third population of memory CD4 T cells characterized as CD45RA+CCRT that, based on its replication history and the homeostatic proliferative capacity, was at an advanced stage of differentiation. Three different phenotypic patterns of memory CD4 T cell responses were delineated under different conditions of antigen (Ag) persistence and load using CD45RA and CCR7 as markers of memory T cells. Mono-phenotypic CD45RA'CCR7+ or CD45RA'CCR7' CD4 T cell responses were associated with conditions of Ag clearance (tetanus toxoid-specific CD4 T cell response) or Ag persistence and high load (chronic HIV-1 and primary CMV infections), respectively. Multi-phenotypic CD45RA CCR7+, CD45RA'CCRT and CD45RA+CCRT CD4 T cell responses were associated with protracted Ag exposure and low load (chronic CMV, EBV and HSV infections and HIV-1 infection in long-term nonprogressors). The mono-phenotypic CD45RA'CCR7+ response was typical of central memory (TCM) IL-2-secreting CD4 T cells, the mono-phenotypic CD45RA CCRT response of effector memory (TEM) IFN-γ -secreting CD4 T cells and the multi-phenotypic response of both IL-2- and IFN-γ -secreting cells. The present results indicate that the heterogeneity of different Ag-specific CD4 T cell responses is regulated by Ag exposure and Ag load.
Resumo:
We have previously shown that vaccination of HLA-A2 metastatic melanoma patients with the analogue Melan-A(26-35(A27L)) peptide emulsified in a mineral oil induces ex vivo detectable specific CD8 T cells. These are further enhanced when a TLR9 agonist is codelivered in the same vaccine formulation. Interestingly, the same peptide can be efficiently recognized by HLA-DQ6-restricted CD4 T cells. We used HLA-DQ6 multimers to assess the specific CD4 T-cell response in both healthy individuals and melanoma patients. We report that the majority of melanoma patients carry high frequencies of naturally circulating HLA-DQ6-restricted Melan-A-specific CD4 T cells, a high proportion of which express FOXP3 and proliferate poorly in response to the cognate peptide. Upon vaccination, the relative frequency of multimer+ CD4 T cells did not change significantly. In contrast, we found a marked shift to FOXP3-negative CD4 T cells, accompanied by robust CD4 T-cell proliferation upon in vitro stimulation with cognate peptide. A concomitant reduction in TCR diversity was also observed. This is the first report on direct ex vivo identification of antigen-specific FOXP3+ T cells by multimer labeling in cancer patients and on the direct assessment of the impact of peptide vaccination on immunoregulatory T cells.
Resumo:
Increasing evidence suggests that adoptive transfer of antigen-specific CD8(+) T cells could represent an effective strategy in the fight against chronic viral infections and malignancies such as melanoma. None the less, a major limitation in the implementation of such therapy resides in the difficulties associated with achieving rapid and efficient expansion of functional T cells in culture necessary to obtain the large numbers required for intravenous infusion. Recently, the critical role of the cytokines interleukin (IL)-2, IL-7 and IL-15 in driving T cell proliferation has been emphasized, thus suggesting their use in the optimization of expansion protocols. We have used major histocompatibility complex (MHC) class I/peptide multimers to monitor the expansion of antigen-specific CD8 T lymphocytes from whole blood, exploring the effect of antigenic peptide dose, IL-2, IL-7 and IL-15 concentrations on the magnitude and functional characteristics of the antigen-specific CD8(+) T cells generated. We show here that significant expansions of antigen-specific T cells, up to 50% of the CD8(+) T cell population, can be obtained after a single round of antigen/cytokine (IL-2 or IL-15) stimulation, and that these cells display good cytolytic and interferon (IFN)-gamma secretion capabilities. Our results provide an important basis for the rapid in vitro expansion of autologous T cells from the circulating lymphocyte pool using a simple procedure, which is necessary for the development of adoptive transfer therapies.
Resumo:
Attempts to inhibit the recognition of soluble antigens by T lymphocytes using antibodies specific for the antigen in question have been uniformally unsuccessful, in contrast to the observed specific inhibition of antibody generation by B cells. One exception is the unique situation whereby anti-hapten antisera inhibit the T-cell proliferative responses observed when hapten-specific T lymphocytes or clones are cultured with hapten-derivatized cells or proteins. The inability to inhibit T-cell functions by antigen-specific antibodies has been interpreted in several ways: (1) T cells possess a different repertoire from B cells; (2) the antibodies tested recognize epitopes present on the native antigen, whereas T cells recognize non-native (processed) structures; (3) the antigenic determinant(s) recognized by T cells on the surface of antigen presenting cells are either not accessible to antibodies, or are present in low amounts. The development of antigen-specific T-cell clones and monoclonal antibodies both specific for the same antigenic determinants now allows this question to be investigated definitively. Here, we report for the first time the specific inhibition of antigen-induced T-cell clone proliferation by a monoclonal antibody directed against the relevant soluble protein antigen.
Resumo:
Persistent viruses are kept in check by specific lymphocytes. The clonal T cell receptor (TCR) repertoire against Epstein-Barr virus (EBV), once established following primary infection, exhibits a robust stability over time. However, the determinants contributing to this long-term persistence are still poorly characterized. Taking advantage of an in vivo clinical setting where lymphocyte homeostasis was transiently perturbed, we studied EBV antigen-specific CD8 T cells before and after non-myeloablative lympho-depleting chemotherapy of melanoma patients. Despite more advanced T cell differentiation, patients T cells showed clonal composition comparable to healthy individuals, sharing a preference for TRBV20 and TRBV29 gene segment usage and several co-dominant public TCR clonotypes. Moreover, our data revealed the presence of relatively few dominant EBV antigen-specific T cell clonotypes, which mostly persisted following transient lympho-depletion (TLD) and lymphocyte recovery, likely related to absence of EBV reactivation and de novo T cell priming in these patients. Interestingly, persisting clonotypes frequently co-expressed memory/homing-associated genes (CD27, IL7R, EOMES, CD62L/SELL and CCR5) supporting the notion that they are particularly important for long-lasting CD8 T cell responses. Nevertheless, the clonal composition of EBV-specific CD8 T cells was preserved over time with the presence of the same dominant clonotypes after non-myeloablative chemotherapy. The observed clonotype persistence demonstrates high robustness of CD8 T cell homeostasis and reconstitution.