48 resultados para Professional development in secondary schools
Resumo:
Obesity results from the organism's inability to maintain energy balance over a long term. Childhood obesity and its related factors and pathological consequences tend to persist into adulthood. A cluster of factors, including high energy density in the diet (high fat intake), low energy expenditure, and disturbed substrate oxidation, favour the increase in fat mass. Oxidation of three major macronutrients and their roles in the regulation of energy balance, particularly in children and adolescents, are discussed. Total glucose oxidation is not different between obese and lean children; exogenous glucose utilization is higher whereas endogenous glucose utilization is lower in obese compared with lean children. Carbohydrate composition of the diet determines carbohydrate oxidation regardless of fat content of the diet. Both exogenous and endogenous fat oxidation are higher in obese than in lean subjects. The influence of high fat intake on accumulation of fat mass is operative rather over a long term. Several future directions are addressed, such that a combination of increased physical activity and modification in diet composition, in terms of energy density and glycemic index, is recommended for children and adolescents.
Resumo:
AIMS: To estimate physical activity trajectories for people who quit smoking, and compare them to what would have been expected had smoking continued. DESIGN, SETTING AND PARTICIPANTS: A total of 5115 participants in the Coronary Artery Risk Development in Young Adults Study (CARDIA) study, a population-based study of African American and European American people recruited at age 18-30 years in 1985/6 and followed over 25 years. MEASUREMENTS: Physical activity was self-reported during clinical examinations at baseline (1985/6) and at years 2, 5, 7, 10, 15, 20 and 25 (2010/11); smoking status was reported each year (at examinations or by telephone, and imputed where missing). We used mixed linear models to estimate trajectories of physical activity under varying smoking conditions, with adjustment for participant characteristics and secular trends. FINDINGS: We found significant interactions by race/sex (P = 0.02 for the interaction with cumulative years of smoking), hence we investigated the subgroups separately. Increasing years of smoking were associated with a decline in physical activity in black and white women and black men [e.g. coefficient for 10 years of smoking: -0.14; 95% confidence interval (CI) = -0.20 to -0.07, P < 0.001 for white women]. An increase in physical activity was associated with years since smoking cessation in white men (coefficient 0.06; 95% CI = 0 to 0.13, P = 0.05). The physical activity trajectory for people who quit diverged progressively towards higher physical activity from the expected trajectory had smoking continued. For example, physical activity was 34% higher (95% CI = 18 to 52%; P < 0.001) for white women 10 years after stopping compared with continuing smoking for those 10 years (P = 0.21 for race/sex differences). CONCLUSIONS: Smokers who quit have progressively higher levels of physical activity in the years after quitting compared with continuing smokers.
Resumo:
PURPOSE: We evaluated the feasibility of biomarker development in the context of multicenter clinical trials. EXPERIMENTAL DESIGN: Formalin-fixed, paraffin-embedded (FFPE) tissue samples were collected from a prospective adjuvant colon cancer trial (PETACC3). DNA was isolated from tumor as well as normal tissue and used for analysis of microsatellite instability, KRAS and BRAF genotyping, UGT1A1 genotyping, and loss of heterozygosity of 18 q loci. Immunohistochemistry was used to test expression of TERT, SMAD4, p53, and TYMS. Messenger RNA was retrieved and tested for use in expression profiling experiments. RESULTS: Of the 3,278 patients entered in the study, FFPE blocks were obtained from 1,564 patients coming from 368 different centers in 31 countries. In over 95% of the samples, genomic DNA tests yielded a reliable result. Of the immmunohistochemical tests, p53 and SMAD4 staining did best with reliable results in over 85% of the cases. TERT was the most problematic test with 46% of failures, mostly due to insufficient tissue processing quality. Good quality mRNA was obtained, usable in expression profiling experiments. CONCLUSIONS: Prospective clinical trials can be used as framework for biomarker development using routinely processed FFPE tissues. Our results support the notion that as a rule, translational studies based on FFPE should be included in prospective clinical trials.
Resumo:
Reproductive isolation between lineages is expected to accumulate with divergence time, but the time taken to speciate may strongly vary between different groups of organisms. In anuran amphibians, laboratory crosses can still produce viable hybrid offspring >20 My after separation, but the speed of speciation in closely related anuran lineages under natural conditions is poorly studied. Palearctic green toads (Bufo viridis subgroup) offer an excellent system to address this question, comprising several lineages that arose at different times and form secondary contact zones. Using mitochondrial and nuclear markers, we previously demonstrated that in Sicily, B. siculus and B. balearicus developed advanced reproductive isolation after Plio-Pleistocene divergence (2.6 My, 3.3-1.9), with limited historic mtDNA introgression, scarce nuclear admixture, but low, if any, current gene flow. Here, we study genetic interactions between younger lineages of early Pleistocene divergence (1.9 My, 2.5-1.3) in northeastern Italy (B. balearicus, B. viridis). We find significantly more, asymmetric nuclear and wider, differential mtDNA introgression. The population structure seems to be molded by geographic distance and barriers (rivers), much more than by intrinsic genomic incompatibilities. These differences of hybridization between zones may be partly explained by differences in the duration of previous isolation. Scattered research on other anurans suggests that wide hybrid zones with strong introgression may develop when secondary contacts occur <2 My after divergence, whereas narrower zones with restricted gene flow form when divergence exceeds 3 My. Our study strengthens support for this rule of thumb by comparing lineages with different divergence times within the same radiation.
Resumo:
Hyperammonemic disorders in pediatric patients lead to poorly understood irreversible effects on the developing brain that may be life-threatening. We showed previously that some of these NH4+-induced irreversible effects might be due to impairment of axonal growth that can be protected under ammonium exposure by creatine co-treatment. The aim of the present work was thus to analyse how the genes of arginine:glycine amidinotransferase (AGAT) and guanidinoacetate methyltransferase (GAMT), allowing creatine synthesis, as well as of the creatine transporter SLC6A8, allowing creatine uptake into cells, are regulated in rat brain cells under NH4+ exposure. Reaggregated brain cell three-dimensional cultures exposed to NH4Cl were used as an experimental model of hyperammonemia in the developing central nervous system (CNS). We show here that NH4+ exposure differentially alters AGAT, GAMT and SLC6A8 regulation, in terms of both gene expression and protein activity, in a cell type-specific manner. In particular, we demonstrate that NH4+ exposure decreases both creatine and its synthesis intermediate, guanidinoacetate, in brain cells, probably through the inhibition of AGAT enzymatic activity. Our work also suggests that oligodendrocytes are major actors in the brain in terms of creatine synthesis, trafficking and uptake, which might be affected by hyperammonemia. Finally, we show that NH4+ exposure induces SLC6A8 in astrocytes. This suggests that hyperammonemia increases blood-brain barrier permeability for creatine. This is normally limited due to the absence of SLC6A8 from the astrocyte feet lining microcapillary endothelial cells, and thus creatine supplementation may protect the developing CNS of hyperammonemic patients.
Resumo:
The objective of this article is to examine how substantive and procedural rights granted to foreign investors by Swiss bits are gradually being balanced with social and environmental provisions. Switzerland has enjoyed a long bit practice, as it signed its first treaty with Tunisia fifty years ago. Swiss bits rely on the post-establishment model and include usual standards of treatment. From 1981, they also systematically provide for a dispute settlement mechanism for disputes arising between an investor and a host State. Since the Switzerland - El Salvador bit in 1994, sustainable development concerns have been expressly inserted in some Swiss bits, as well as in several recent free trade agreements. Provisions on this theme are however far from being systematic in Switzerland's bit practice and essentially remain declaratory in nature. The trend towards wider inclusion of sustainable development provisions in bits still faces several practical and political challenges.
Resumo:
Akt/protein kinase B (PKB) plays a critical role in the regulation of metabolism, transcription, cell migration, cell cycle progression, and cell survival. The existence of viable knockout mice for each of the three isoforms suggests functional redundancy. We generated mice with combined mutant alleles of Akt1 and Akt3 to study their effects on mouse development. Here we show that Akt1-/- Akt3+/- mice display multiple defects in the thymus, heart, and skin and die within several days after birth, while Akt1+/- Akt3-/- mice survive normally. Double knockout (Akt1-/-) Akt3-/-) causes embryonic lethality at around embryonic days 11 and 12, with more severe developmental defects in the cardiovascular and nervous systems. Increased apoptosis was found in the developing brain of double mutant embryos. These data indicate that the Akt1 gene is more essential than Akt3 for embryonic development and survival but that both are required for embryo development. Our results indicate isoform-specific and dosage-dependent effects of Akt on animal survival and development.
Resumo:
Development and environmental issues of small cities in developing countries have largely been overlooked although these settlements are of global demographic importance and often face a "triple challenge"; that is, they have limited financial and human resources to address growing environmental problems that are related to both development (e.g., pollution) and under-development (e.g., inadequate water supply). Neoliberal policy has arguably aggravated this challenge as public investments in infrastructure generally declined while the focus shifted to the metropolitan "economic growth machines". This paper develops a conceptual framework and agenda for the study of small cities in the global south, their environmental dynamics, governance and politics in the current neoliberal context. While small cities are governed in a neoliberal policy context, they are not central to neoliberalism, and their (environmental) governance therefore seems to differ from that of global cities. Furthermore, "actually existing" neoliberal governance of small cities is shaped by the interplay of regional and local politics and environmental situations. The approach of urban political ecology and the concept of rural-urban linkages are used to consider these socio-ecological processes. The conceptual framework and research agenda are illustrated in the case of India, where the agency of small cities in regard to environmental governance seems to remain limited despite formal political decentralization.
Resumo:
Two mutually exclusive hypotheses have been put forward to explain the evolution and adaptive function of melanin-based color traits. According to sexual selection theory melanism is a directionally selected signal of individual quality, whereas theory on the maintenance of genetic polymorphism proposes that alternative melanin-based variants achieve equal fitness. Alpine swift (Apus melba) males and females have a conspicuous patch of white feathers on the breast with their rachis varying continuously from white to black, and hence the breast varies from white to striated. If this trait is a sexually selected signal of quality, its expression should be condition dependent and the degree of melanism directionally selected. If variation in melanism is a polymorphism, its expression should be genetically determined and fitness of melanin-based variants equal. We experimentally tested these predictions by exchanging eggs or hatchlings between randomly chosen nests and by estimating survival and reproduction in relation to melanism. We found that breast melanism is heritable and that the environment and body condition do not significantly influence its expression. Between 5 and 50 days of age nestlings were heavier and their wings longer when breast feathers of their biological father were blacker, and they also fledged at a younger age. This shows that aspects of offspring quality covary positively with the degree of melanism. However, this did not result in directional selection because nestling survival and recruitment in the local breeding population were not associated with father breast melanism. Furthermore, adult survival, age at first reproduction and probability of skipping reproduction did not covary with the degree of melanism. Genetic variation in breast melanism is therefore maintained either because nonmelanic males achieve fitness similar to melanic males via a different route than producing fast-growing offspring, or because the advantage of producing fast-growing offspring is not sufficiently pronounced to result in directional selection.
Resumo:
In addition to their CD1d-restricted T cell receptor (TCR), natural killer T (NKT) cells express various receptors normally associated with NK cells thought to act, in part, as modulators of TCR signaling. Immunoreceptor-tyrosine activation (ITAM) and inhibition (ITIM) motifs associated with NK receptors may augment or attenuate perceived TCR signals respectively, potentially influencing NKT cell development and function. ITIM-containing Ly49 family receptors expressed by NKT cells are proposed to play a role in their development and function. We have produced mice transgenic for the ITAM-associated Ly49D and ITIM-containing Ly49A receptors and their common ligand H2-Dd to determine the importance of these signaling interplays in NKT cell development. Ly49D/H2-Dd transgenic mice had selectively and severely reduced numbers of thymic and peripheral NKT cells, whereas both ligand and Ly49D transgenics had normal numbers of NKT cells. CD1d tetramer staining revealed a blockade of NKT cell development at an early precursor stage. Coexpression of a Ly49A transgene partially rescued NKT cell development in Ly49D/H2-Dd transgenics, presumably due to attenuation of ITAM signaling. Thus, Ly49D-induced ITAM signaling is incompatible with the early development of cells expressing semi-invariant CD1d-restricted TCRs and appropriately harmonized ITIM-ITAM signaling is likely to play an important role in the developmental program of NKT cells.
Resumo:
BACKGROUND: Alpha-dystroglycan (alpha-DG) is a cell surface receptor providing a molecular link between the extracellular matrix (ECM) and the actin-based cytoskeleton. During its biosynthesis, alpha-DG undergoes specific and unusual O-glycosylation crucial for its function as a high-affinity cellular receptor for ECM proteins. METHODOLOGY/PRINCIPAL FINDINGS: We report that expression of functionally glycosylated alpha-DG during thymic development is tightly regulated in developing T cells and largely confined to CD4(-)CD8(-) double negative (DN) thymocytes. Ablation of DG in T cells had no effect on proliferation, migration or effector function but did reduce the size of the thymus due to a significant loss in absolute numbers of thymocytes. While numbers of DN thymocytes appeared normal, a marked reduction in CD4(+)CD8(+) double positive (DP) thymocytes occurred. In the periphery mature naïve T cells deficient in DG showed both normal proliferation in response to allogeneic cells and normal migration, effector and memory T cell function when tested in acute infection of mice with either lymphocytic choriomeningitis virus (LCMV) or influenza virus. CONCLUSIONS/SIGNIFICANCE: Our study demonstrates that DG function is modulated by glycosylation during T cell development in vivo and that DG is essential for normal development and differentiation of T cells.
Resumo:
QUESTIONS UNDER STUDY: The starting point of the interdisciplinary project "Assessing the impact of diagnosis related groups (DRGs) on patient care and professional practice" (IDoC) was the lack of a systematic ethical assessment for the introduction of cost containment measures in healthcare. Our aim was to contribute to the methodological and empirical basis of such an assessment. METHODS: Five sub-groups conducted separate but related research within the fields of biomedical ethics, law, nursing sciences and health services, applying a number of complementary methodological approaches. The individual research projects were framed within an overall ethical matrix. Workshops and bilateral meetings were held to identify and elaborate joint research themes. RESULTS: Four common, ethically relevant themes emerged in the results of the studies across sub-groups: (1.) the quality and safety of patient care, (2.) the state of professional practice of physicians and nurses, (3.) changes in incentives structure, (4.) vulnerable groups and access to healthcare services. Furthermore, much-needed data for future comparative research has been collected and some early insights into the potential impact of DRGs are outlined. CONCLUSIONS: Based on the joint results we developed preliminary recommendations related to conceptual analysis, methodological refinement, monitoring and implementation.
Resumo:
Fibroblast-like cells of secondary lymphoid organs (SLO) are important for tissue architecture. In addition, they regulate lymphocyte compartmentalization through the secretion of chemokines, and participate in the orchestration of appropriate cell-cell interactions required for adaptive immunity. Here, we provide data demonstrating the functional importance of SLO fibroblasts during Notch-mediated lineage specification and immune response. Genetic ablation of the Notch ligand Delta-like (DL)1 identified splenic fibroblasts rather than hematopoietic or endothelial cells as niche cells, allowing Notch 2-driven differentiation of marginal zone B cells and of Esam(+) dendritic cells. Moreover, conditional inactivation of DL4 in lymph node fibroblasts resulted in impaired follicular helper T cell differentiation and, consequently, in reduced numbers of germinal center B cells and absence of high-affinity antibodies. Our data demonstrate previously unknown roles for DL ligand-expressing fibroblasts in SLO niches as drivers of multiple Notch-mediated immune differentiation processes.