32 resultados para Process models


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Developing a sense of identity is a crucial psychosocial task for young people. The purpose of this study was to evaluate identity development in French-speaking adolescents and emerging adults (in France and Switzerland) using a process-oriented model of identity formation including five dimensions (i.e., exploration in breadth, commitment making, exploration in depth, identification with commitment, and ruminative exploration). The study included participants from three different samples (total N = 2239, 66.7% women): two samples of emerging adult student and one sample of adolescents. Results confirmed the hypothesized five-factor dimensional model of identity in our three samples and provided evidence for convergent validity of the model. The results also indicated that exploration in depth might be subdivided in two aspects: a first form of exploration in depth leading to a better understanding and to an increase of the strength of current commitments and a second form of exploration in depth leading to a re-evaluation and a reconsideration of current commitments. Further, the identity status cluster solution that emerged is globally in line with previous literature (i.e., achievement, foreclosure, moratorium, carefree diffusion, diffused diffusion, undifferentiated). However, despite a structural similarity, we found variations in identity profiles because identity development is shaped by cultural context. These specific variations are discussed in light of social, educational and economic differences between France and the French-speaking part of Switzerland. Implications and suggestions for future research are offered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. Identifying those areas suitable for recolonization by threatened species is essential to support efficient conservation policies. Habitat suitability models (HSM) predict species' potential distributions, but the quality of their predictions should be carefully assessed when the species-environment equilibrium assumption is violated.2. We studied the Eurasian otter Lutra lutra, whose numbers are recovering in southern Italy. To produce widely applicable results, we chose standard HSM procedures and looked for the models' capacities in predicting the suitability of a recolonization area. We used two fieldwork datasets: presence-only data, used in the Ecological Niche Factor Analyses (ENFA), and presence-absence data, used in a Generalized Linear Model (GLM). In addition to cross-validation, we independently evaluated the models with data from a recolonization event, providing presences on a previously unoccupied river.3. Three of the models successfully predicted the suitability of the recolonization area, but the GLM built with data before the recolonization disagreed with these predictions, missing the recolonized river's suitability and badly describing the otter's niche. Our results highlighted three points of relevance to modelling practices: (1) absences may prevent the models from correctly identifying areas suitable for a species spread; (2) the selection of variables may lead to randomness in the predictions; and (3) the Area Under Curve (AUC), a commonly used validation index, was not well suited to the evaluation of model quality, whereas the Boyce Index (CBI), based on presence data only, better highlighted the models' fit to the recolonization observations.4. For species with unstable spatial distributions, presence-only models may work better than presence-absence methods in making reliable predictions of suitable areas for expansion. An iterative modelling process, using new occurrences from each step of the species spread, may also help in progressively reducing errors.5. Synthesis and applications. Conservation plans depend on reliable models of the species' suitable habitats. In non-equilibrium situations, such as the case for threatened or invasive species, models could be affected negatively by the inclusion of absence data when predicting the areas of potential expansion. Presence-only methods will here provide a better basis for productive conservation management practices.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Traditionally, the common reserving methods used by the non-life actuaries are based on the assumption that future claims are going to behave in the same way as they did in the past. There are two main sources of variability in the processus of development of the claims: the variability of the speed with which the claims are settled and the variability between the severity of the claims from different accident years. High changes in these processes will generate distortions in the estimation of the claims reserves. The main objective of this thesis is to provide an indicator which firstly identifies and quantifies these two influences and secondly to determine which model is adequate for a specific situation. Two stochastic models were analysed and the predictive distributions of the future claims were obtained. The main advantage of the stochastic models is that they provide measures of variability of the reserves estimates. The first model (PDM) combines one conjugate family Dirichlet - Multinomial with the Poisson distribution. The second model (NBDM) improves the first one by combining two conjugate families Poisson -Gamma (for distribution of the ultimate amounts) and Dirichlet Multinomial (for distribution of the incremental claims payments). It was found that the second model allows to find the speed variability in the reporting process and development of the claims severity as function of two above mentioned distributions' parameters. These are the shape parameter of the Gamma distribution and the Dirichlet parameter. Depending on the relation between them we can decide on the adequacy of the claims reserve estimation method. The parameters have been estimated by the Methods of Moments and Maximum Likelihood. The results were tested using chosen simulation data and then using real data originating from the three lines of business: Property/Casualty, General Liability, and Accident Insurance. These data include different developments and specificities. The outcome of the thesis shows that when the Dirichlet parameter is greater than the shape parameter of the Gamma, resulting in a model with positive correlation between the past and future claims payments, suggests the Chain-Ladder method as appropriate for the claims reserve estimation. In terms of claims reserves, if the cumulated payments are high the positive correlation will imply high expectations for the future payments resulting in high claims reserves estimates. The negative correlation appears when the Dirichlet parameter is lower than the shape parameter of the Gamma, meaning low expected future payments for the same high observed cumulated payments. This corresponds to the situation when claims are reported rapidly and fewer claims remain expected subsequently. The extreme case appears in the situation when all claims are reported at the same time leading to expectations for the future payments of zero or equal to the aggregated amount of the ultimate paid claims. For this latter case, the Chain-Ladder is not recommended.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evidence-based (EBP) aims for a new distribution of power centered on scientific evidence rather than clinical expertise. The present article describes the operational process of EBP by describing the implementation stages of this type of practise. This stage presentation is essential given that there are many conceptions end models of EBP and that some nurses have a limited knowledge of its rules ans implications. Given that number and formulation of the stages varies by author, the process presented here attempts to integrate the different stages reviewed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim Conservation strategies are in need of predictions that capture spatial community composition and structure. Currently, the methods used to generate these predictions generally focus on deterministic processes and omit important stochastic processes and other unexplained variation in model outputs. Here we test a novel approach of community models that accounts for this variation and determine how well it reproduces observed properties of alpine butterfly communities. Location The western Swiss Alps. Methods We propose a new approach to process probabilistic predictions derived from stacked species distribution models (S-SDMs) in order to predict and assess the uncertainty in the predictions of community properties. We test the utility of our novel approach against a traditional threshold-based approach. We used mountain butterfly communities spanning a large elevation gradient as a case study and evaluated the ability of our approach to model species richness and phylogenetic diversity of communities. Results S-SDMs reproduced the observed decrease in phylogenetic diversity and species richness with elevation, syndromes of environmental filtering. The prediction accuracy of community properties vary along environmental gradient: variability in predictions of species richness was higher at low elevation, while it was lower for phylogenetic diversity. Our approach allowed mapping the variability in species richness and phylogenetic diversity projections. Main conclusion Using our probabilistic approach to process species distribution models outputs to reconstruct communities furnishes an improved picture of the range of possible assemblage realisations under similar environmental conditions given stochastic processes and help inform manager of the uncertainty in the modelling results

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The pace of on-going climate change calls for reliable plant biodiversity scenarios. Traditional dynamic vegetation models use plant functional types that are summarized to such an extent that they become meaningless for biodiversity scenarios. Hybrid dynamic vegetation models of intermediate complexity (hybrid-DVMs) have recently been developed to address this issue. These models, at the crossroads between phenomenological and process-based models, are able to involve an intermediate number of well-chosen plant functional groups (PFGs). The challenge is to build meaningful PFGs that are representative of plant biodiversity, and consistent with the parameters and processes of hybrid-DVMs. Here, we propose and test a framework based on few selected traits to define a limited number of PFGs, which are both representative of the diversity (functional and taxonomic) of the flora in the Ecrins National Park, and adapted to hybrid-DVMs. This new classification scheme, together with recent advances in vegetation modeling, constitutes a step forward for mechanistic biodiversity modeling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a recent paper, Traulsen and Nowak use a multilevel selection model to show that cooperation can be favored by group selection in finite populations [Traulsen A, Nowak M (2006) Proc Natl Acad Sci USA 103:10952-10955]. The authors challenge the view that kin selection may be an appropriate interpretation of their results and state that group selection is a distinctive process "that permeates evolutionary processes from the emergence of the first cells to eusociality and the economics of nations." In this paper, we start by addressing Traulsen and Nowak's challenge and demonstrate that all their results can be obtained by an application of kin selection theory. We then extend Traulsen and Nowak's model to life history conditions that have been previously studied. This allows us to highlight the differences and similarities between Traulsen and Nowak's model and typical kin selection models and also to broaden the scope of their results. Our retrospective analyses of Traulsen and Nowak's model illustrate that it is possible to convert group selection models to kin selection models without disturbing the mathematics describing the net effect of selection on cooperation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Depth-averaged velocities and unit discharges within a 30 km reach of one of the world's largest rivers, the Rio Parana, Argentina, were simulated using three hydrodynamic models with different process representations: a reduced complexity (RC) model that neglects most of the physics governing fluid flow, a two-dimensional model based on the shallow water equations, and a three-dimensional model based on the Reynolds-averaged Navier-Stokes equations. Row characteristics simulated using all three models were compared with data obtained by acoustic Doppler current profiler surveys at four cross sections within the study reach. This analysis demonstrates that, surprisingly, the performance of the RC model is generally equal to, and in some instances better than, that of the physics based models in terms of the statistical agreement between simulated and measured flow properties. In addition, in contrast to previous applications of RC models, the present study demonstrates that the RC model can successfully predict measured flow velocities. The strong performance of the RC model reflects, in part, the simplicity of the depth-averaged mean flow patterns within the study reach and the dominant role of channel-scale topographic features in controlling the flow dynamics. Moreover, the very low water surface slopes that typify large sand-bed rivers enable flow depths to be estimated reliably in the RC model using a simple fixed-lid planar water surface approximation. This approach overcomes a major problem encountered in the application of RC models in environments characterised by shallow flows and steep bed gradients. The RC model is four orders of magnitude faster than the physics based models when performing steady-state hydrodynamic calculations. However, the iterative nature of the RC model calculations implies a reduction in computational efficiency relative to some other RC models. A further implication of this is that, if used to simulate channel morphodynamics, the present RC model may offer only a marginal advantage in terms of computational efficiency over approaches based on the shallow water equations. These observations illustrate the trade off between model realism and efficiency that is a key consideration in RC modelling. Moreover, this outcome highlights a need to rethink the use of RC morphodynamic models in fluvial geomorphology and to move away from existing grid-based approaches, such as the popular cellular automata (CA) models, that remain essentially reductionist in nature. In the case of the world's largest sand-bed rivers, this might be achieved by implementing the RC model outlined here as one element within a hierarchical modelling framework that would enable computationally efficient simulation of the morphodynamics of large rivers over millennial time scales. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Because data on rare species usually are sparse, it is important to have efficient ways to sample additional data. Traditional sampling approaches are of limited value for rare species because a very large proportion of randomly chosen sampling sites are unlikely to shelter the species. For these species, spatial predictions from niche-based distribution models can be used to stratify the sampling and increase sampling efficiency. New data sampled are then used to improve the initial model. Applying this approach repeatedly is an adaptive process that may allow increasing the number of new occurrences found. We illustrate the approach with a case study of a rare and endangered plant species in Switzerland and a simulation experiment. Our field survey confirmed that the method helps in the discovery of new populations of the target species in remote areas where the predicted habitat suitability is high. In our simulations the model-based approach provided a significant improvement (by a factor of 1.8 to 4 times, depending on the measure) over simple random sampling. In terms of cost this approach may save up to 70% of the time spent in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In dynamic models of energy allocation, assimilated energy is allocated to reproduction, somatic growth, maintenance or storage, and the allocation pattern can change with age. The expected evolutionary outcome is an optimal allocation pattern, but this depends on the environment experienced during the evolutionary process and on the fitness costs and benefits incurred by allocating resources in different ways. Here we review existing treatments which encompass some of the possibilities as regards constant or variable environments and their predictability or unpredictability, and the ways in which production rates and mortality rates depend on body size and composition and age and on the pattern of energy allocation. The optimal policy is to allocate resources where selection pressures are highest, and simultaneous allocation to several body subsystems and reproduction can be optimal if these pressures are equal. This may explain balanced growth commonly observed during ontogeny. Growth ceases at maturity in many models; factors favouring growth after maturity include non-linear trade-offs, variable season length, and production and mortality rates both increasing (or decreasing) functions of body size. We cannot yet say whether these are sufficient to account for the many known cases of growth after maturity and not all reasonable models have yet been explored. Factors favouring storage are also reviewed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In (1) H magnetic resonance spectroscopy, macromolecule signals underlay metabolite signals, and knowing their contribution is necessary for reliable metabolite quantification. When macromolecule signals are measured using an inversion-recovery pulse sequence, special care needs to be taken to correctly remove residual metabolite signals to obtain a pure macromolecule spectrum. Furthermore, since a single spectrum is commonly used for quantification in multiple experiments, the impact of potential macromolecule signal variability, because of regional differences or pathologies, on metabolite quantification has to be assessed. In this study, we introduced a novel method to post-process measured macromolecule signals that offers a flexible and robust way of removing residual metabolite signals. This method was applied to investigate regional differences in the mouse brain macromolecule signals that may affect metabolite quantification when not taken into account. However, since no significant differences in metabolite quantification were detected, it was concluded that a single macromolecule spectrum can be generally used for the quantification of healthy mouse brain spectra. Alternatively, the study of a mouse model of human glioma showed several alterations of the macromolecule spectrum, including, but not limited to, increased mobile lipid signals, which had to be taken into account to avoid significant metabolite quantification errors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract: The expansion of a recovering population - whether re-introduced or spontaneously returning - is shaped by (i) biological (intrinsic) factors such as the land tenure system or dispersal, (ii) the distribution and availability of resources (e.g. prey), (iii) habitat and landscape features, and (iv) human attitudes and activities. In order to develop efficient conservation and recovery strategies, we need to understand all these factors and to predict the potential distribution and explore ways to reach it. An increased number of lynx in the north-western Swiss Alps in the nineties lead to a new controversy about the return of this cat. When the large carnivores were given legal protection in many European countries, most organizations and individuals promoting their protection did not foresee the consequences. Management plans describing how to handle conflicts with large predators are needed to find a balance between "overabundance" and extinction. Wildlife and conservation biologists need to evaluate the various threats confronting populations so that adequate management decisions can be taken. I developed a GIS probability model for the lynx, based on habitat information and radio-telemetry data from the Swiss Jura Mountains, in order to predict the potential distribution of the lynx in this mountain range, which is presently only partly occupied by lynx. Three of the 18 variables tested for each square kilometre describing land use, vegetation, and topography, qualified to predict the probability of lynx presence. The resulting map was evaluated with data from dispersing subadult lynx. Young lynx that were not able to establish home ranges in what was identified as good lynx habitat did not survive their first year of independence, whereas the only one that died in good lynx habitat was illegally killed. Radio-telemetry fixes are often used as input data to calibrate habitat models. Radio-telemetry is the only way to gather accurate and unbiased data on habitat use of elusive larger terrestrial mammals. However, it is time consuming and expensive, and can therefore only be applied in limited areas. Habitat models extrapolated over large areas can in turn be problematic, as habitat characteristics and availability may change from one area to the other. I analysed the predictive power of Ecological Niche Factor Analysis (ENFA) in Switzerland with the lynx as focal species. According to my results, the optimal sampling strategy to predict species distribution in an Alpine area lacking available data would be to pool presence cells from contrasted regions (Jura Mountains, Alps), whereas in regions with a low ecological variance (Jura Mountains), only local presence cells should be used for the calibration of the model. Dispersal influences the dynamics and persistence of populations, the distribution and abundance of species, and gives the communities and ecosystems their characteristic texture in space and time. Between 1988 and 2001, the spatio-temporal behaviour of subadult Eurasian lynx in two re-introduced populations in Switzerland was studied, based on 39 juvenile lynx of which 24 were radio-tagged to understand the factors influencing dispersal. Subadults become independent from their mothers at the age of 8-11 months. No sex bias neither in the dispersal rate nor in the distance moved was detected. Lynx are conservative dispersers, compared to bear and wolf, and settled within or close to known lynx occurrences. Dispersal distances reached in the high lynx density population - shorter than those reported in other Eurasian lynx studies - are limited by habitat restriction hindering connections with neighbouring metapopulations. I postulated that high lynx density would lead to an expansion of the population and validated my predictions with data from the north-western Swiss Alps where about 1995 a strong increase in lynx abundance took place. The general hypothesis that high population density will foster the expansion of the population was not confirmed. This has consequences for the re-introduction and recovery of carnivores in a fragmented landscape. To establish a strong source population in one place might not be an optimal strategy. Rather, population nuclei should be founded in several neighbouring patches. Exchange between established neighbouring subpopulations will later on take place, as adult lynx show a higher propensity to cross barriers than subadults. To estimate the potential population size of the lynx in the Jura Mountains and to assess possible corridors between this population and adjacent areas, I adapted a habitat probability model for lynx distribution in the Jura Mountains with new environmental data and extrapolated it over the entire mountain range. The model predicts a breeding population ranging from 74-101 individuals and from 51-79 individuals when continuous habitat patches < 50 km2 are disregarded. The Jura Mountains could once be part of a metapopulation, as potential corridors exist to the adjoining areas (Alps, Vosges Mountains, and Black Forest). Monitoring of the population size, spatial expansion, and the genetic surveillance in the Jura Mountains must be continued, as the status of the population is still critical. ENFA was used to predict the potential distribution of lynx in the Alps. The resulting model divided the Alps into 37 suitable habitat patches ranging from 50 to 18,711 km2, covering a total area of about 93,600 km2. When using the range of lynx densities found in field studies in Switzerland, the Alps could host a population of 961 to 1,827 residents. The results of the cost-distance analysis revealed that all patches were within the reach of dispersing lynx, as the connection costs were in the range of dispersal cost of radio-tagged subadult lynx moving through unfavorable habitat. Thus, the whole Alps could once be considered as a metapopulation. But experience suggests that only few disperser will cross unsuitable areas and barriers. This low migration rate may seldom allow the spontaneous foundation of new populations in unsettled areas. As an alternative to natural dispersal, artificial transfer of individuals across the barriers should be considered. Wildlife biologists can play a crucial role in developing adaptive management experiments to help managers learning by trial. The case of the lynx in Switzerland is a good example of a fruitful cooperation between wildlife biologists, managers, decision makers and politician in an adaptive management process. This cooperation resulted in a Lynx Management Plan which was implemented in 2000 and updated in 2004 to give the cantons directives on how to handle lynx-related problems. This plan was put into practice e.g. in regard to translocation of lynx into unsettled areas. Résumé: L'expansion d'une population en phase de recolonisation, qu'elle soit issue de réintroductions ou d'un retour naturel dépend 1) de facteurs biologiques tels que le système social et le mode de dispersion, 2) de la distribution et la disponibilité des ressources (proies), 3) de l'habitat et des éléments du paysage, 4) de l'acceptation de l'espèce par la population locale et des activités humaines. Afin de pouvoir développer des stratégies efficaces de conservation et de favoriser la recolonisation, chacun de ces facteurs doit être pris en compte. En plus, la distribution potentielle de l'espèce doit pouvoir être déterminée et enfin, toutes les possibilités pour atteindre les objectifs, examinées. La phase de haute densité que la population de lynx a connue dans les années nonante dans le nord-ouest des Alpes suisses a donné lieu à une controverse assez vive. La protection du lynx dans de nombreux pays européens, promue par différentes organisations, a entraîné des conséquences inattendues; ces dernières montrent que tout plan de gestion doit impérativement indiquer des pistes quant à la manière de gérer les conflits, tout en trouvant un équilibre entre l'extinction et la surabondance de l'espèce. Les biologistes de la conservation et de la faune sauvage doivent pour cela évaluer les différents risques encourus par les populations de lynx, afin de pouvoir rapidement prendre les meilleuresmdécisions de gestion. Un modèle d'habitat pour le lynx, basé sur des caractéristiques de l'habitat et des données radio télémétriques collectées dans la chaîne du Jura, a été élaboré afin de prédire la distribution potentielle dans cette région, qui n'est que partiellement occupée par l'espèce. Trois des 18 variables testées, décrivant pour chaque kilomètre carré l'utilisation du sol, la végétation ainsi que la topographie, ont été retenues pour déterminer la probabilité de présence du lynx. La carte qui en résulte a été comparée aux données télémétriques de lynx subadultes en phase de dispersion. Les jeunes qui n'ont pas pu établir leur domaine vital dans l'habitat favorable prédit par le modèle n'ont pas survécu leur première année d'indépendance alors que le seul individu qui est mort dans l'habitat favorable a été braconné. Les données radio-télémétriques sont souvent utilisées pour l'étalonnage de modèles d'habitat. C'est un des seuls moyens à disposition qui permette de récolter des données non biaisées et précises sur l'occupation de l'habitat par des mammifères terrestres aux moeurs discrètes. Mais ces méthodes de- mandent un important investissement en moyens financiers et en temps et peuvent, de ce fait, n'être appliquées qu'à des zones limitées. Les modèles d'habitat sont ainsi souvent extrapolés à de grandes surfaces malgré le risque d'imprécision, qui résulte des variations des caractéristiques et de la disponibilité de l'habitat d'une zone à l'autre. Le pouvoir de prédiction de l'Analyse Ecologique de la Niche (AEN) dans les zones où les données de présence n'ont pas été prises en compte dans le calibrage du modèle a été analysée dans le cas du lynx en Suisse. D'après les résultats obtenus, la meilleure mé- thode pour prédire la distribution du lynx dans une zone alpine dépourvue d'indices de présence est de combiner des données provenant de régions contrastées (Alpes, Jura). Par contre, seules les données sur la présence locale de l'espèce doivent être utilisées pour les zones présentant une faible variance écologique tel que le Jura. La dispersion influence la dynamique et la stabilité des populations, la distribution et l'abondance des espèces et détermine les caractéristiques spatiales et temporelles des communautés vivantes et des écosystèmes. Entre 1988 et 2001, le comportement spatio-temporel de lynx eurasiens subadultes de deux populations réintroduites en Suisse a été étudié, basé sur le suivi de 39 individus juvéniles dont 24 étaient munis d'un collier émetteur, afin de déterminer les facteurs qui influencent la dispersion. Les subadultes se sont séparés de leur mère à l'âge de 8 à 11 mois. Le sexe n'a pas eu d'influence sur le nombre d'individus ayant dispersés et la distance parcourue au cours de la dispersion. Comparé à l'ours et au loup, le lynx reste très modéré dans ses mouvements de dispersion. Tous les individus ayant dispersés se sont établis à proximité ou dans des zones déjà occupées par des lynx. Les distances parcourues lors de la dispersion ont été plus courtes pour la population en phase de haute densité que celles relevées par les autres études de dispersion du lynx eurasien. Les zones d'habitat peu favorables et les barrières qui interrompent la connectivité entre les populations sont les principales entraves aux déplacements, lors de la dispersion. Dans un premier temps, nous avons fait l'hypothèse que les phases de haute densité favorisaient l'expansion des populations. Mais cette hypothèse a été infirmée par les résultats issus du suivi des lynx réalisé dans le nord-ouest des Alpes, où la population connaissait une phase de haute densité depuis 1995. Ce constat est important pour la conservation d'une population de carnivores dans un habitat fragmenté. Ainsi, instaurer une forte population source à un seul endroit n'est pas forcément la stratégie la plus judicieuse. Il est préférable d'établir des noyaux de populations dans des régions voisines où l'habitat est favorable. Des échanges entre des populations avoisinantes pourront avoir lieu par la suite car les lynx adultes sont plus enclins à franchir les barrières qui entravent leurs déplacements que les individus subadultes. Afin d'estimer la taille de la population de lynx dans le Jura et de déterminer les corridors potentiels entre cette région et les zones avoisinantes, un modèle d'habitat a été utilisé, basé sur un nouveau jeu de variables environnementales et extrapolé à l'ensemble du Jura. Le modèle prédit une population reproductrice de 74 à 101 individus et de 51 à 79 individus lorsque les surfaces d'habitat d'un seul tenant de moins de 50 km2 sont soustraites. Comme des corridors potentiels existent effectivement entre le Jura et les régions avoisinantes (Alpes, Vosges, et Forêt Noire), le Jura pourrait faire partie à l'avenir d'une métapopulation, lorsque les zones avoisinantes seront colonisées par l'espèce. La surveillance de la taille de la population, de son expansion spatiale et de sa structure génétique doit être maintenue car le statut de cette population est encore critique. L'AEN a également été utilisée pour prédire l'habitat favorable du lynx dans les Alpes. Le modèle qui en résulte divise les Alpes en 37 sous-unités d'habitat favorable dont la surface varie de 50 à 18'711 km2, pour une superficie totale de 93'600 km2. En utilisant le spectre des densités observées dans les études radio-télémétriques effectuées en Suisse, les Alpes pourraient accueillir une population de lynx résidents variant de 961 à 1'827 individus. Les résultats des analyses de connectivité montrent que les sous-unités d'habitat favorable se situent à des distances telles que le coût de la dispersion pour l'espèce est admissible. L'ensemble des Alpes pourrait donc un jour former une métapopulation. Mais l'expérience montre que très peu d'individus traverseront des habitats peu favorables et des barrières au cours de leur dispersion. Ce faible taux de migration rendra difficile toute nouvelle implantation de populations dans des zones inoccupées. Une solution alternative existe cependant : transférer artificiellement des individus d'une zone à l'autre. Les biologistes spécialistes de la faune sauvage peuvent jouer un rôle important et complémentaire pour les gestionnaires de la faune, en les aidant à mener des expériences de gestion par essai. Le cas du lynx en Suisse est un bel exemple d'une collaboration fructueuse entre biologistes de la faune sauvage, gestionnaires, organes décisionnaires et politiciens. Cette coopération a permis l'élaboration du Concept Lynx Suisse qui est entré en vigueur en 2000 et remis à jour en 2004. Ce plan donne des directives aux cantons pour appréhender la problématique du lynx. Il y a déjà eu des applications concrètes sur le terrain, notamment par des translocations d'individus dans des zones encore inoccupées.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper is motivated by the valuation problem of guaranteed minimum death benefits in various equity-linked products. At the time of death, a benefit payment is due. It may depend not only on the price of a stock or stock fund at that time, but also on prior prices. The problem is to calculate the expected discounted value of the benefit payment. Because the distribution of the time of death can be approximated by a combination of exponential distributions, it suffices to solve the problem for an exponentially distributed time of death. The stock price process is assumed to be the exponential of a Brownian motion plus an independent compound Poisson process whose upward and downward jumps are modeled by combinations (or mixtures) of exponential distributions. Results for exponential stopping of a Lévy process are used to derive a series of closed-form formulas for call, put, lookback, and barrier options, dynamic fund protection, and dynamic withdrawal benefit with guarantee. We also discuss how barrier options can be used to model lapses and surrenders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Occupational exposure modeling is widely used in the context of the E.U. regulation on the registration, evaluation, authorization, and restriction of chemicals (REACH). First tier tools, such as European Centre for Ecotoxicology and TOxicology of Chemicals (ECETOC) targeted risk assessment (TRA) or Stoffenmanager, are used to screen a wide range of substances. Those of concern are investigated further using second tier tools, e.g., Advanced REACH Tool (ART). Local sensitivity analysis (SA) methods are used here to determine dominant factors for three models commonly used within the REACH framework: ECETOC TRA v3, Stoffenmanager 4.5, and ART 1.5. Based on the results of the SA, the robustness of the models is assessed. For ECETOC, the process category (PROC) is the most important factor. A failure to identify the correct PROC has severe consequences for the exposure estimate. Stoffenmanager is the most balanced model and decision making uncertainties in one modifying factor are less severe in Stoffenmanager. ART requires a careful evaluation of the decisions in the source compartment since it constitutes ∼75% of the total exposure range, which corresponds to an exposure estimate of 20-22 orders of magnitude. Our results indicate that there is a trade off between accuracy and precision of the models. Previous studies suggested that ART may lead to more accurate results in well-documented exposure situations. However, the choice of the adequate model should ultimately be determined by the quality of the available exposure data: if the practitioner is uncertain concerning two or more decisions in the entry parameters, Stoffenmanager may be more robust than ART.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cooperation and coordination are desirable behaviors that are fundamental for the harmonious development of society. People need to rely on cooperation with other individuals in many aspects of everyday life, such as teamwork and economic exchange in anonymous markets. However, cooperation may easily fall prey to exploitation by selfish individuals who only care about short- term gain. For cooperation to evolve, specific conditions and mechanisms are required, such as kinship, direct and indirect reciprocity through repeated interactions, or external interventions such as punishment. In this dissertation we investigate the effect of the network structure of the population on the evolution of cooperation and coordination. We consider several kinds of static and dynamical network topologies, such as Baraba´si-Albert, social network models and spatial networks. We perform numerical simulations and laboratory experiments using the Prisoner's Dilemma and co- ordination games in order to contrast human behavior with theoretical results. We show by numerical simulations that even a moderate amount of random noise on the Baraba´si-Albert scale-free network links causes a significant loss of cooperation, to the point that cooperation almost vanishes altogether in the Prisoner's Dilemma when the noise rate is high enough. Moreover, when we consider fixed social-like networks we find that current models of social networks may allow cooperation to emerge and to be robust at least as much as in scale-free networks. In the framework of spatial networks, we investigate whether cooperation can evolve and be stable when agents move randomly or performing Le´vy flights in a continuous space. We also consider discrete space adopting purposeful mobility and binary birth-death process to dis- cover emergent cooperative patterns. The fundamental result is that cooperation may be enhanced when this migration is opportunistic or even when agents follow very simple heuristics. In the experimental laboratory, we investigate the issue of social coordination between indi- viduals located on networks of contacts. In contrast to simulations, we find that human players dynamics do not converge to the efficient outcome more often in a social-like network than in a random network. In another experiment, we study the behavior of people who play a pure co- ordination game in a spatial environment in which they can move around and when changing convention is costly. We find that each convention forms homogeneous clusters and is adopted by approximately half of the individuals. When we provide them with global information, i.e., the number of subjects currently adopting one of the conventions, global consensus is reached in most, but not all, cases. Our results allow us to extract the heuristics used by the participants and to build a numerical simulation model that agrees very well with the experiments. Our findings have important implications for policymakers intending to promote specific, desired behaviors in a mobile population. Furthermore, we carry out an experiment with human subjects playing the Prisoner's Dilemma game in a diluted grid where people are able to move around. In contrast to previous results on purposeful rewiring in relational networks, we find no noticeable effect of mobility in space on the level of cooperation. Clusters of cooperators form momentarily but in a few rounds they dissolve as cooperators at the boundaries stop tolerating being cheated upon. Our results highlight the difficulties that mobile agents have to establish a cooperative environment in a spatial setting without a device such as reputation or the possibility of retaliation. i.e. punishment. Finally, we test experimentally the evolution of cooperation in social networks taking into ac- count a setting where we allow people to make or break links at their will. In this work we give particular attention to whether information on an individual's actions is freely available to poten- tial partners or not. Studying the role of information is relevant as information on other people's actions is often not available for free: a recruiting firm may need to call a job candidate's refer- ences, a bank may need to find out about the credit history of a new client, etc. We find that people cooperate almost fully when information on their actions is freely available to their potential part- ners. Cooperation is less likely, however, if people have to pay about half of what they gain from cooperating with a cooperator. Cooperation declines even further if people have to pay a cost that is almost equivalent to the gain from cooperating with a cooperator. Thus, costly information on potential neighbors' actions can undermine the incentive to cooperate in dynamical networks.