199 resultados para Presence-absence Data
Resumo:
A wide range of modelling algorithms is used by ecologists, conservation practitioners, and others to predict species ranges from point locality data. Unfortunately, the amount of data available is limited for many taxa and regions, making it essential to quantify the sensitivity of these algorithms to sample size. This is the first study to address this need by rigorously evaluating a broad suite of algorithms with independent presence-absence data from multiple species and regions. We evaluated predictions from 12 algorithms for 46 species (from six different regions of the world) at three sample sizes (100, 30, and 10 records). We used data from natural history collections to run the models, and evaluated the quality of model predictions with area under the receiver operating characteristic curve (AUC). With decreasing sample size, model accuracy decreased and variability increased across species and between models. Novel modelling methods that incorporate both interactions between predictor variables and complex response shapes (i.e. GBM, MARS-INT, BRUTO) performed better than most methods at large sample sizes but not at the smallest sample sizes. Other algorithms were much less sensitive to sample size, including an algorithm based on maximum entropy (MAXENT) that had among the best predictive power across all sample sizes. Relative to other algorithms, a distance metric algorithm (DOMAIN) and a genetic algorithm (OM-GARP) had intermediate performance at the largest sample size and among the best performance at the lowest sample size. No algorithm predicted consistently well with small sample size (n < 30) and this should encourage highly conservative use of predictions based on small sample size and restrict their use to exploratory modelling.
Resumo:
Aim We examined whether species occurrences are primarily limited by physiological tolerance in the abiotically more stressful end of climatic gradients (the asymmetric abiotic stress limitation (AASL) hypothesis) and the geographical predictions of this hypothesis: abiotic stress mainly determines upper-latitudinal and upper-altitudinal species range limits, and the importance of abiotic stress for these range limits increases the further northwards and upwards a species occurs. Location Europe and the Swiss Alps. Methods The AASL hypothesis predicts that species have skewed responses to climatic gradients, with a steep decline towards the more stressful conditions. Based on presence-absence data we examined the shape of plant species responses (measured as probability of occurrence) along three climatic gradients across latitudes in Europe (1577 species) and altitudes in the Swiss Alps (284 species) using Huisman-Olff-Fresco, generalized linear and generalized additive models. Results We found that almost half of the species from Europe and one-third from the Swiss Alps showed responses consistent with the predictions of the AASL hypothesis. Cold temperatures and a short growing season seemed to determine the upper-latitudinal and upper-altitudinal range limits of up to one-third of the species, while drought provided an important constraint at lower-latitudinal range limits for up to one-fifth of the species. We found a biome-dependent influence of abiotic stress and no clear support for abiotic stress as a stronger upper range-limit determinant for species with higher latitudinal and altitudinal distributions. However, the overall influence of climate as a range-limit determinant increased with latitude. Main conclusions Our results support the AASL hypothesis for almost half of the studied species, and suggest that temperature-related stress controls the upper-latitudinal and upper-altitudinal range limits of a large proportion of these species, while other factors including drought stress may be important at the lower range limits.
Resumo:
Background Multiple logistic regression is precluded from many practical applications in ecology that aim to predict the geographic distributions of species because it requires absence data, which are rarely available or are unreliable. In order to use multiple logistic regression, many studies have simulated "pseudo-absences" through a number of strategies, but it is unknown how the choice of strategy influences models and their geographic predictions of species. In this paper we evaluate the effect of several prevailing pseudo-absence strategies on the predictions of the geographic distribution of a virtual species whose "true" distribution and relationship to three environmental predictors was predefined. We evaluated the effect of using a) real absences b) pseudo-absences selected randomly from the background and c) two-step approaches: pseudo-absences selected from low suitability areas predicted by either Ecological Niche Factor Analysis: (ENFA) or BIOCLIM. We compared how the choice of pseudo-absence strategy affected model fit, predictive power, and information-theoretic model selection results. Results Models built with true absences had the best predictive power, best discriminatory power, and the "true" model (the one that contained the correct predictors) was supported by the data according to AIC, as expected. Models based on random pseudo-absences had among the lowest fit, but yielded the second highest AUC value (0.97), and the "true" model was also supported by the data. Models based on two-step approaches had intermediate fit, the lowest predictive power, and the "true" model was not supported by the data. Conclusion If ecologists wish to build parsimonious GLM models that will allow them to make robust predictions, a reasonable approach is to use a large number of randomly selected pseudo-absences, and perform model selection based on an information theoretic approach. However, the resulting models can be expected to have limited fit.
Resumo:
Maximum entropy modeling (Maxent) is a widely used algorithm for predicting species distributions across space and time. Properly assessing the uncertainty in such predictions is non-trivial and requires validation with independent datasets. Notably, model complexity (number of model parameters) remains a major concern in relation to overfitting and, hence, transferability of Maxent models. An emerging approach is to validate the cross-temporal transferability of model predictions using paleoecological data. In this study, we assess the effect of model complexity on the performance of Maxent projections across time using two European plant species (Alnus giutinosa (L.) Gaertn. and Corylus avellana L) with an extensive late Quaternary fossil record in Spain as a study case. We fit 110 models with different levels of complexity under present time and tested model performance using AUC (area under the receiver operating characteristic curve) and AlCc (corrected Akaike Information Criterion) through the standard procedure of randomly partitioning current occurrence data. We then compared these results to an independent validation by projecting the models to mid-Holocene (6000 years before present) climatic conditions in Spain to assess their ability to predict fossil pollen presence-absence and abundance. We find that calibrating Maxent models with default settings result in the generation of overly complex models. While model performance increased with model complexity when predicting current distributions, it was higher with intermediate complexity when predicting mid-Holocene distributions. Hence, models of intermediate complexity resulted in the best trade-off to predict species distributions across time. Reliable temporal model transferability is especially relevant for forecasting species distributions under future climate change. Consequently, species-specific model tuning should be used to find the best modeling settings to control for complexity, notably with paleoecological data to independently validate model projections. For cross-temporal projections of species distributions for which paleoecological data is not available, models of intermediate complexity should be selected.
Resumo:
The aim of this work is to evaluate the capabilities and limitations of chemometric methods and other mathematical treatments applied on spectroscopic data and more specifically on paint samples. The uniqueness of the spectroscopic data comes from the fact that they are multivariate - a few thousands variables - and highly correlated. Statistical methods are used to study and discriminate samples. A collection of 34 red paint samples was measured by Infrared and Raman spectroscopy. Data pretreatment and variable selection demonstrated that the use of Standard Normal Variate (SNV), together with removal of the noisy variables by a selection of the wavelengths from 650 to 1830 cm−1 and 2730-3600 cm−1, provided the optimal results for infrared analysis. Principal component analysis (PCA) and hierarchical clusters analysis (HCA) were then used as exploratory techniques to provide evidence of structure in the data, cluster, or detect outliers. With the FTIR spectra, the Principal Components (PCs) correspond to binder types and the presence/absence of calcium carbonate. 83% of the total variance is explained by the four first PCs. As for the Raman spectra, we observe six different clusters corresponding to the different pigment compositions when plotting the first two PCs, which account for 37% and 20% respectively of the total variance. In conclusion, the use of chemometrics for the forensic analysis of paints provides a valuable tool for objective decision-making, a reduction of the possible classification errors, and a better efficiency, having robust results with time saving data treatments.
Resumo:
Which of these two confounding factors, weather or food availability - that largely correlate and interact - controls the timing of parturition in insectivorous bats? To answer this question. we took advantage of a predator-prey system that offers a unique opportunity to perform natural experiments. The phenology of reproduction of two sibling bat species that inhabit the same colonial roosts, but exploit different feeding niches. was investigated. Myotis myotis feeds mainly on carabid beetles, a food source available from the end of hibernation onwards, whereas bush crickets, the main prey of M. blythii, are not available early in the season due to their successive instars; cockchafers are actually the sole possible alternative prey for M. blythii at that time of the year, but they occur every third year only, independently of local weather conditions. By comparing the species responses to the presence/absence of cockchafers, we could test the hypothesis that food availability, rather than climate. influences the timing of bat parturition. Our data show that Nt. blythii gave birth, on average. 10 d later than M. myotis in years without cockchafers, whilst parturition (1) was synchronous during cockchafer years, and (2) did not show much among-year time variation in M. myotis. This suggests that food availability is the chief factor regulating the timing of parturition in mouse-eared bats.
Resumo:
BACKGROUND: Malaria is almost invariably ranked as the leading cause of morbidity and mortality in Africa. There is growing evidence of a decline in malaria transmission, morbidity and mortality over the last decades, especially so in East Africa. However, there is still doubt whether this decline is reflected in a reduction of the proportion of malaria among fevers. The objective of this systematic review was to estimate the change in the Proportion of Fevers associated with Plasmodium falciparum parasitaemia (PFPf) over the past 20 years in sub-Saharan Africa. METHODS: Search strategy. In December 2009, publications from the National Library of Medicine database were searched using the combination of 16 MeSH terms.Selection criteria. Inclusion criteria: studies 1) conducted in sub-Saharan Africa, 2) patients presenting with a syndrome of 'presumptive malaria', 3) numerators (number of parasitologically confirmed cases) and denominators (total number of presumptive malaria cases) available, 4) good quality microscopy.Data collection and analysis. The following variables were extracted: parasite presence/absence, total number of patients, age group, year, season, country and setting, clinical inclusion criteria. To assess the dynamic of PFPf over time, the median PFPf was compared between studies published in the years ≤2000 and > 2000. RESULTS: 39 studies conducted between 1986 and 2007 in 16 different African countries were included in the final analysis. When comparing data up to year 2000 (24 studies) with those afterwards (15 studies), there was a clear reduction in the median PFPf from 44% (IQR 31-58%; range 7-81%) to 22% (IQR 13-33%; range 2-77%). This dramatic decline is likely to reflect a true change since stratified analyses including explanatory variables were performed and median PFPfs were always lower after 2000 compared to before. CONCLUSIONS: There was a considerable reduction of the proportion of malaria among fevers over time in Africa. This decline provides evidence for the policy change from presumptive anti-malarial treatment of all children with fever to laboratory diagnosis and treatment upon result. This should insure appropriate care of non-malaria fevers and rationale use of anti-malarials.
Resumo:
Aim, Location Although the alpine mouse Apodemus alpicola has been given species status since 1989, no distribution map has ever been constructed for this endemic alpine rodent in Switzerland. Based on redetermined museum material and using the Ecological-Niche Factor Analysis (ENFA), habitat-suitability maps were computed for A. alpicola, and also for the co-occurring A. flavicollis and A. sylvaticus. Methods In the particular case of habitat suitability models, classical approaches (GLMs, GAMs, discriminant analysis, etc.) generally require presence and absence data. The presence records provided by museums can clearly give useful information about species distribution and ecology and have already been used for knowledge-based mapping. In this paper, we apply the ENFA which requires only presence data, to build a habitat-suitability map of three species of Apodemus on the basis of museum skull collections. Results Interspecific niche comparisons showed that A. alpicola is very specialized concerning habitat selection, meaning that its habitat differs unequivocally from the average conditions in Switzerland, while both A. flavicollis and A. sylvaticus could be considered as 'generalists' in the study area. Main conclusions Although an adequate sampling design is the best way to collect ecological data for predictive modelling, this is a time and money consuming process and there are cases where time is simply not available, as for instance with endangered species conservation. On the other hand, museums, herbariums and other similar institutions are treasuring huge presence data sets. By applying the ENFA to such data it is possible to rapidly construct a habitat suitability model. The ENFA method not only provides two key measurements regarding the niche of a species (i.e. marginality and specialization), but also has ecological meaning, and allows the scientist to compare directly the niches of different species.
Resumo:
Designing an efficient sampling strategy is of crucial importance for habitat suitability modelling. This paper compares four such strategies, namely, 'random', 'regular', 'proportional-stratified' and 'equal -stratified'- to investigate (1) how they affect prediction accuracy and (2) how sensitive they are to sample size. In order to compare them, a virtual species approach (Ecol. Model. 145 (2001) 111) in a real landscape, based on reliable data, was chosen. The distribution of the virtual species was sampled 300 times using each of the four strategies in four sample sizes. The sampled data were then fed into a GLM to make two types of prediction: (1) habitat suitability and (2) presence/ absence. Comparing the predictions to the known distribution of the virtual species allows model accuracy to be assessed. Habitat suitability predictions were assessed by Pearson's correlation coefficient and presence/absence predictions by Cohen's K agreement coefficient. The results show the 'regular' and 'equal-stratified' sampling strategies to be the most accurate and most robust. We propose the following characteristics to improve sample design: (1) increase sample size, (2) prefer systematic to random sampling and (3) include environmental information in the design'
Resumo:
1. The ecological niche is a fundamental biological concept. Modelling species' niches is central to numerous ecological applications, including predicting species invasions, identifying reservoirs for disease, nature reserve design and forecasting the effects of anthropogenic and natural climate change on species' ranges. 2. A computational analogue of Hutchinson's ecological niche concept (the multidimensional hyperspace of species' environmental requirements) is the support of the distribution of environments in which the species persist. Recently developed machine-learning algorithms can estimate the support of such high-dimensional distributions. We show how support vector machines can be used to map ecological niches using only observations of species presence to train distribution models for 106 species of woody plants and trees in a montane environment using up to nine environmental covariates. 3. We compared the accuracy of three methods that differ in their approaches to reducing model complexity. We tested models with independent observations of both species presence and species absence. We found that the simplest procedure, which uses all available variables and no pre-processing to reduce correlation, was best overall. Ecological niche models based on support vector machines are theoretically superior to models that rely on simulating pseudo-absence data and are comparable in empirical tests. 4. Synthesis and applications. Accurate species distribution models are crucial for effective environmental planning, management and conservation, and for unravelling the role of the environment in human health and welfare. Models based on distribution estimation rather than classification overcome theoretical and practical obstacles that pervade species distribution modelling. In particular, ecological niche models based on machine-learning algorithms for estimating the support of a statistical distribution provide a promising new approach to identifying species' potential distributions and to project changes in these distributions as a result of climate change, land use and landscape alteration.
Resumo:
The objective of this study was to evaluate the performance of stacked species distribution models in predicting the alpha and gamma species diversity patterns of two important plant clades along elevation in the Andes. We modelled the distribution of the species in the Anthurium genus (53 species) and the Bromeliaceae family (89 species) using six modelling techniques. We combined all of the predictions for the same species in ensemble models based on two different criteria: the average of the rescaled predictions by all techniques and the average of the best techniques. The rescaled predictions were then reclassified into binary predictions (presence/absence). By stacking either the original predictions or binary predictions for both ensemble procedures, we obtained four different species richness models per taxa. The gamma and alpha diversity per elevation band (500 m) was also computed. To evaluate the prediction abilities for the four predictions of species richness and gamma diversity, the models were compared with the real data along an elevation gradient that was independently compiled by specialists. Finally, we also tested whether our richness models performed better than a null model of altitudinal changes of diversity based on the literature. Stacking of the ensemble prediction of the individual species models generated richness models that proved to be well correlated with the observed alpha diversity richness patterns along elevation and with the gamma diversity derived from the literature. Overall, these models tend to overpredict species richness. The use of the ensemble predictions from the species models built with different techniques seems very promising for modelling of species assemblages. Stacking of the binary models reduced the over-prediction, although more research is needed. The randomisation test proved to be a promising method for testing the performance of the stacked models, but other implementations may still be developed.
Resumo:
We analysed the relationship between changes in land cover patterns and the Eurasian otter occurrence over the course of about 20 years (1985-2006) using multi-temporal Species Distribution Models (SDMs). The study area includes five river catchments covering most of the otter's Italian range. Land cover and topographic data were used as proxies of the ecological requirements of the otter within a 300-m buffer around river courses. We used species presence, pseudo-absence data, and environmental predictors to build past (1985) and current (2006) SDMs by applying an ensemble procedure through the BIOMOD modelling package. The performance of each model was evaluated by measuring the area under the curve (AUC) of the receiver-operating characteristic (ROC). Multi-temporal analyses of species distribution and land cover maps were performed by comparing the maps produced for 1985 and 2006. The ensemble procedure provided a good overall modelling accuracy, revealing that elevation and slope affected the otter's distribution in the past; in contrast, land cover predictors, such as cultivations and forests, were more important in the present period. During the transition period, 20.5% of the area became suitable, with 76% of the new otter presence data being located in these newly available areas. The multi-temporal analysis suggested that the quality of otter habitat improved in the last 20 years owing to the expansion of forests and to the reduction of cultivated fields in riparian belts. The evidence presented here stresses the great potential of riverine habitat restoration and environmental management for the future expansion of the otter in Italy
Resumo:
NlmCategory="UNASSIGNED">Objects' borders are readily perceived despite absent contrast gradients, e.g. due to poor lighting or occlusion. In humans, a visual evoked potential (VEP) correlate of illusory contour (IC) sensitivity, the "IC effect", has been identified with an onset at ~90ms and generators within bilateral lateral occipital cortices (LOC). The IC effect is observed across a wide range of stimulus parameters, though until now it always involved high-contrast achromatic stimuli. Whether IC perception and its brain mechanisms differ as a function of the type of stimulus cue remains unknown. Resolving such will provide insights on whether there is a unique or multiple solutions to how the brain binds together spatially fractionated information into a cohesive perception. Here, participants discriminated IC from no-contour (NC) control stimuli that were either comprised of low-contrast achromatic stimuli or instead isoluminant chromatic contrast stimuli (presumably biasing processing to the magnocellular and parvocellular pathways, respectively) on separate blocks of trials. Behavioural analyses revealed that ICs were readily perceived independently of the stimulus cue-i.e. when defined by either chromatic or luminance contrast. VEPs were analysed within an electrical neuroimaging framework and revealed a generally similar timing of IC effects across both stimulus contrasts (i.e. at ~90ms). Additionally, an overall phase shift of the VEP on the order of ~30ms was consistently observed in response to chromatic vs. luminance contrast independently of the presence/absence of ICs. Critically, topographic differences in the IC effect were observed over the ~110-160ms period; different configurations of intracranial sources contributed to IC sensitivity as a function of stimulus contrast. Distributed source estimations localized these differences to LOC as well as V1/V2. The present data expand current models by demonstrating the existence of multiple, cue-dependent circuits in the brain for generating perceptions of illusory contours.
Resumo:
Divergent and convergent margins actualistic models are reviewed and applied to the history of the western Alps. Tethyan rifting history and geometry are analyzed: the northern European margin is considered as an upper plate whereas the southern Apulian margin is a lower plate; the Breche basin is regarded as the former break-away trough; the internal Brianconnais domain represents the northern rift shoulder whilst the more external domains are regarded as the infill of a complex rim basin locally affected by important extension (Valaisan and Vocontain trough). The Schistes lustres and ophiolites of the Tsate nappe are compared to an accretionary prism: the imbrication of this nappe elements is regarded as a direct consequence of the accretionary phenomena already active in early Cretaceous; the Gets/Simme complex could orginate from a more internal part of the accretionary prism. Some eclogitic basements represent the former Apulian margin substratum (Sesia) others (Mont-Rose) are interpreted as the former edge of the European margin. The history of the closing Tethyan domain is analyzed and the remaining problems concerning the cinematics, the presence/absence of a volcanic arc and the eoalpine metamorphism are discussed.
Resumo:
It has been suggested that primate mating and social behaviours may be influenced by variation in promoter region repetitive DNA of the vasopressin receptor 1a gene (avpr1a). We show that male mating behaviour does not covary in a simple way with promoter repetitive DNA in 12 Old World primates. We found that one microsatellite (-553 bp upstream) was present in all species, irrespective of their behaviour. By contrast, two microsatellites (-3956 and -3625 bp upstream) were present only in some species, yet this variation did not correlate with behaviour. These findings agree with a recent comparative analysis of voles and show that the variation in repetitive DNA in the avpr1a promoter region does not generally explain variation in male mating behaviour. Phylogenetic analysis revealed a GAGTA motif that has been independently deleted three times and involved in another larger deletion. Importantly, the presence/absence of this GAGTA motif leads to changes in predicted transcription factor-binding sites. Given the repeated loss of this motif, we speculate that it might be of functional relevance. We suggest that such non-repetitive variation, either in indels or in sequence variation, are likely to be important in explaining interspecific variation in avpr1a expression.