21 resultados para Power spectral analysis
Resumo:
Among the tools proposed to assess the athlete's "fatigue," the analysis of heart rate variability (HRV) provides an indirect evaluation of the settings of autonomic control of heart activity. HRV analysis is performed through assessment of time-domain indices, the square root of the mean of the sum of the squares of differences between adjacent normal R-R intervals (RMSSD) measured during short (5 min) recordings in supine position upon awakening in the morning and particularly the logarithm of RMSSD (LnRMSSD) has been proposed as the most useful resting HRV indicator. However, if RMSSD can help the practitioner to identify a global "fatigue" level, it does not allow discriminating different types of fatigue. Recent results using spectral HRV analysis highlighted firstly that HRV profiles assessed in supine and standing positions are independent and complementary; and secondly that using these postural profiles allows the clustering of distinct sub-categories of "fatigue." Since, cardiovascular control settings are different in standing and lying posture, using the HRV figures of both postures to cluster fatigue state embeds information on the dynamics of control responses. Such, HRV spectral analysis appears more sensitive and enlightening than time-domain HRV indices. The wealthier information provided by this spectral analysis should improve the monitoring of the adaptive training-recovery process in athletes.
Resumo:
A photonic system has been developed that enables sensitive quantitative determination of reactive oxygen species (ROS) - mainly hydrogen peroxide (H2O2) - in aerosol samples such as airborne nanoparticles and exhaled air from patients. The detection principle relies on the amplification of the absorbance under multiple scattering conditions due to optical path lengthening [1] and [2]. In this study, the presence of cellulose membrane that acts as random medium into the glass optical cell considerably improved the sensitivity of the detection based on colorimetric FOX assay (FeII/orange xylenol). Despite the loss of assay volume (cellulose occupies 75% of cell volume) the limit of detection is enhanced by one order of magnitude reaching the value of 9 nM (H2O2 equivalents). Spectral analysis is performed automatically with a periodicity of 5 to 15 s, giving rise to real-time ROS measurements. Moreover, the elution of air sample into the collection chamber via a micro-diffuser (impinger) enables quantitative determination of ROS contained in or generated from airborne samples. As proof-of-concept the photonic ROS detection system was used in the determination of both ROS generated from traffic pollution and ROS contained in the exhaled breath as lung inflammation biomarkers.
Resumo:
Analysis of variance is commonly used in morphometry in order to ascertain differences in parameters between several populations. Failure to detect significant differences between populations (type II error) may be due to suboptimal sampling and lead to erroneous conclusions; the concept of statistical power allows one to avoid such failures by means of an adequate sampling. Several examples are given in the morphometry of the nervous system, showing the use of the power of a hierarchical analysis of variance test for the choice of appropriate sample and subsample sizes. In the first case chosen, neuronal densities in the human visual cortex, we find the number of observations to be of little effect. For dendritic spine densities in the visual cortex of mice and humans, the effect is somewhat larger. A substantial effect is shown in our last example, dendritic segmental lengths in monkey lateral geniculate nucleus. It is in the nature of the hierarchical model that sample size is always more important than subsample size. The relative weight to be attributed to subsample size thus depends on the relative magnitude of the between observations variance compared to the between individuals variance.