18 resultados para Ponting, Clive
Resumo:
Abstract The epithelial sodium channel (ENaC) is composed of three homologous subunits α, ß, and γ. This channel is involved in the regulation of sodium balance, which influences the periciliary liquid level in the lung, and blood pressure via the kidney. ENaC expressed in Xenopus laevis oocytes is preferentially and rapidly assembled into heteromeric αßγ complexes. Expression of homomeric α or heteromeric αß and αγ complexes lead to channel expression at the cell surface wíth low activities. Recent studies have demonstrated that α and γ (but not ß) ENaC subunits undergo proteolytic cleavage by endogenous proteases (i.e. furin) correlating with increased channel activity. We therefore assayed the full-length subunits and their cleavage products at the cell surface, as well as in the intracellular pool for all homo- and heteromeric combínations (α, ß, γ, ßγ, αß, αγ, ßγ and αßγ) and measured the corresponding channel activities as amiloride-sensitive sodíum transport (INa). We showed that upon assembly, cleavage of the y ENaC subunit ís responsible for increasing INa. We further demonstrated that in disease states such as cystic fibrosis (CF) where there is disequilibrium in the proteaseprotease inhibitor balance, ENaC is over-activated by the serine protease elastase (NE). We demonstrated that elevated NE concentrations can cleave cell surface expressed γ ENaC (but not α, or ß ENaC), suggesting a causal relationship between γ ENaC cleavage and ENaC activation, taking place at the plasma membrane. In addition, we demonstrated that the serine protease inhibitor (serpin) serpinH1, which is co-expressed with ENaC in the distal nephron is capable of inhibiting the channel by preventing cleavage of the γ ENaC subunit. Aldosterone mediated increases in INa aze known to be inhibted by TGFß. TGFß is also known to increase serpinHl expression. The demonstrated inhibition of γ ENaC cleavage and channel activation by serpinH1 may be responsible for the effect of TGFß on aldosterone stimulation in the distal nephron. In summary, we show that cleavage of the γ subunit, but not the α or ß subunit is linked to channel activation in three seperate contexts. Résumé Le canal épithélial à sodium (ENaC) est constitué de trois sous-unités homologues α, ß, and γ. Ce canal est impliqué dans le maintien de la balance sodique qui influence le niveau du liquide périciliaire du poumon et la pression sanguine via le rein. Dans les ovocytes de Xenopus laevis ENaC est préférentiellement et rapidement exprimé en formant un complexe hétéromérique αßγ. En revanche, l'expression homomérique de α ou hétéromérique des complexes αß et αγ conduit à une expression à la surface cellulaire d'un canal ENaC ne possédant qu'une faible activité. Des études récentes ont mis en évidence que les sous-unités α et γ d'ENaC (mais pas ß) sont coupées par des protéases endogènes (les farines) et que ces clivages augmentent l'activité du canal. Nous avons donc analysé, aussi bien à la surface cellulaire que dans le cytoplasme, les produits des clivages de combinaison homo- et hétéromérique des sous-unités d'ENaC (α, ß, γ, ßγ, αß, αγ, ßγ et αßγ). En parallèle, nous avons étudié l'activité correspondante à ces canaux par la mesure du transport de sodium sensible à l'amiloride (INa). Nous avons montré que lors de l'assemblage des sous-unités d'ENaC, le clivage de γ correspond à l'augmentation de INa. Nous avons également mis en évidence que dans une maladie telle que la fibrose cystique (CF) caractérisée par un déséquilibre de la balance protéase-inhibiteur de protéase, ENaC est suractivé par une sérine protéase nommée élastase (NE). L'augmentation de la concentration de NE clive γ ENaC exprimé à la surface cellulaire (mais pas α, ni ß ENaC) suggérant une causalité entre le clivage d'ENaC et son activation à la membrane plasmique. De plus, nous avons démontré que l'inhibiteur de sérine protéase (serpin) serpinH1, qui est co-exprimé avec ENaC dans le néphron distal, inhibe l'activité du canal en empêchant le clivage de la sous-unité γ ENaC. Il est connu que le INa induit par l'aldostérone peut être inhibé par TGFß. Or TGFß augmente l'expression de serpinH1. L'inhibition du clivage de γ ENaC et de l'activation du canal par la serpinH1 que nous avons mis en évidence pourrait ainsi être responsable de l'effet de TGFß sur la stimulation du courant par l'aldostérone dans le néphron distal. En résumé, nous avons montré que le clivage de la sous-unité γ, mais pas des sous-unités α et ß, est lié à l'activation du canal dans trois contextes distincts. Résumé tout public Le corps humain est composé d'environ 10 000 milliards de cellules et d'approximativement 60% d'eau. Les cellules du corps sont les unités fondamentales de la vie et elles sont dépendantes de certains nutriments et molécules. Ces nutriments et molécules sont dissous dans l'eau qui est présente dans et hors des cellules. Le maintien d'une concentration adéquate - de ces nutriments et de ces molécules dans l'eau à l'intérieur et à l'extérieur des cellules est -..essentiel pour leur survie. L'eau hors des cellules est nommée le fluide extracellulaire et peut être subdivisée en fluide interstitiel, qui se trouve autour des cellules, et en plasma, qui est le fluide des vaisseaux sanguins. Les fluides, les nutriments et les molécules sont constamment échangés entre les cellules, le fluide interstitiel, et le plasma. Le plasma circule dans le système circulatoire afin de distribuer les nutriments et molécules dans tout le corps et afin d'enlever les déchets cellulaires. Le rein joue un rôle essentiel dans la régulation du volume et de la concentration du plasma en éliminant sélectivement les nutriments et les molécules via la formation de l'urine. L'être humain possède deux reins, constitués chacun d'environ 1 million de néphrons. Ces derniers sont responsables de réabsorber et de sécréter sélectivement les nutriments et les molécules. Le canal épithélial à sodium (ENaC) est localisé à la surface cellulaire des néphrons et est responsable de la réabsorption du sodium (Na+). Le Na+ est présent dans quasiment toute la nourriture que nous mangeons et représente, en terme de molécule, 50% du sel de cuisine. Si trop de sodium est consommé, ENaC est inactif, si bien que le Na+ n'est pas réabsorbé et quitte le corps par l'urine. Ce mécanisme permet d'éviter que la concentration plasmatique de Na+ ne devienne trop grande, ce qui résulterait en une augmentation de la pression sanguine. Si trop peu de Na+ est consommé, ENaC réabsorbe le Na+ de l'urine primaire ce qui permet de conserver la concentration de Na+ et de prévenir une diminution de la pression sanguine par une perte de Na+. ENaC est aussi présent dans les cellules des poumons qui sont les organes permettant la respiration. La respiration est aussi essentielle pour la survie des cellules. Les poumons ne doivent pas contenir trop de liquide afin de permettre la respiration, mais en même temps ils ne doivent pas non plus être trop secs. En effet, ceci tuerait les cellules et empêcherait aussi la respiration. ENaC permet de maintenir un niveau d'humidité approprié dans les poumons en absorbant du Na+ ce qui entraîne un mouvement osmotique d'eau. L'absorption de sodium par ENaC ~ est augmentée par les protéases (in vitro et ex vivo). Les protéases sont des molécules qui peuvent couper d'autres molécules à des endroits précis. Nous avons démonté que certaines protéases augmentent l'absorption de Na+ en coupant ENaC à des endroits spécifiques. L'inhibition de ces protéases diminue le transport de Na+ et empêche le clivage d'ENaC. Dans certaines maladies telle que la mucoviscidose, des protéases sont suractivées et augmentent l'activité d'ENaC de manière inappropriée conduisant à une trop forte absorption de Na+ et à un déséquilibre de la muqueuse des poumons. Cette étude est donc particulièrement importante dans le cadre de la recherche thérapeutique de ce genre de maladie.
Resumo:
Recently, a handful of intergenic long noncoding RNAs (lncRNAs) have been shown to compete with mRNAs for binding to miRNAs and to contribute to development and disease. Beyond these reports, little is yet known of the extent and functional consequences of miRNA-mediated regulation of mRNA levels by lncRNAs. To gain further insight into lncRNA-mRNA miRNA-mediated crosstalk, we reanalyzed transcriptome-wide changes induced by the targeted knockdown of over 100 lncRNA transcripts in mouse embryonic stem cells (mESCs). We predicted that, on average, almost one-fifth of the transcript level changes induced by lncRNAs are dependent on miRNAs that are highly abundant in mESCs. We validated these findings experimentally by temporally profiling transcriptome-wide changes in gene expression following the loss of miRNA biogenesis in mESCs. Following the depletion of miRNAs, we found that >50% of lncRNAs and their miRNA-dependent mRNA targets were up-regulated coordinately, consistent with their interaction being miRNA-mediated. These lncRNAs are preferentially located in the cytoplasm, and the response elements for miRNAs they share with their targets have been preserved in mammals by purifying selection. Lastly, miRNA-dependent mRNA targets of each lncRNA tended to share common biological functions. Post-transcriptional miRNA-mediated crosstalk between lncRNAs and mRNA, in mESCs, is thus surprisingly prevalent, conserved in mammals, and likely to contribute to critical developmental processes.
Resumo:
Selon les statistiques, les maladies cancéreuses sont en augmentation dans les pays en développement ainsi que dans les pays industrialisés. Ceci peut s'expliquer largement par les habitudes alimentaires, le tabagisme, les infections, le manque d'activité physique, la pollution et le stress, entre autres. Ainsi, l'Organisation Mondiale de la Santé (OMS) prévoit une augmentation de la fréquence des cancers avec 15 millions de nouveaux cas par an en 2020. La transformation d'une cellule normale en une cellule cancéreuse se déroule en plusieurs étapes avec, au niveau moléculaire, différentes mutations ciblant des protéines régulant la croissance cellulaire. Un des exemples de protéines qui participent au contrôle des voies cellulaires impliquées lors de la prolifération des cellules sont les complexes de protéines mTORCl et mTORC2 (« mammalian target of rapamycin complex 1 and 2 »). Ces complexes mTORCl et mTORC2 activent des processus anaboliques (la synthèse de protéines et de lipides, le métabolisme énergétique, entre autres) et inhibent en même temps des voies de catabolismes cellulaires (autophagie et synthèse de lysosomes). Ils sont souvent mutés dans de nombreux cas de cancers, c'est pourquoi ils sont la cible de nombreux traitements anti-cancéreux. Pour ces raisons, nous nous sommes intéressés aux mécanismes d'actions moléculaires des drogues qui ciblent les complexes mTORCl et mTORC2. Nous avons ainsi découvert qu'une molécule présente uniquement dans le complexe mTORCl, raptor, était clivée en un fragment plus petit lors du traitement de cellules cancéreuses avec des drogues. Des molécules activées durant la mort cellulaire programmée par apoptose, les caspases, se sont révélées responsables du clivage de raptor. Nous avons ensuite décrit de façon précise les sites de clivage de raptor par les caspases durant la mort cellulaire. Il s'est avéré que le clivage de raptor affaiblissait son interaction avec mTOR au sein du complexe mTORCl, ce qui participe à l'inactivation de mTORCl lors de traitements avec des molécules anti-cancéreuses. Ces résultats nous ont permis de mieux comprendre les mécanismes d'actions de différentes drogues anti-cancéreuses au niveau du complexe mTORCl, ce qui peut être utile pour la synthèse de nouvelles molécules ciblant mTORCl ainsi que pour lutter contre les mécanismes de résistance chimiothérapeutiques. -- La protéine « mammalian target of rapamycin » (mTOR) est une sérine/thréonine kinase qui est hautement conservée des protistes à l'être humain. Deux complexes mTOR existent : le complexe 1 mTOR (mTORCl) et le complexe 2 mTOR (mTORC2). Ils régulent positivement des processus anaboliques (synthèse de protéines et de lipides, le métabolisme énergétique, l'organisation du cytosquelette, la survie cellulaire) et négativement des voies cataboliques (autophagic, biogenèse de lysosomes). Les complexes mTORCl et mTORC2 sont sensibles aux signaux mitogéniques tels que les acides aminés, le glucose, les facteurs de croissance, l'état énergétique (ATP) et les niveaux d'oxygène et induisent des voies de croissance cellulaire essentielles. La voie cellulaire regulée par mTORCl peut être hyperactivée dans de nombreux cancers humains. Puisque plusieurs voies cellulaires convergent et régulent les complexes mTORCl et mTORC2, des mutations dans les kinases en amont peuvent mener à une dérégulation de l'activation de mTOR. Des stratégies thérapeutiques ont été développées pour cibler les complexes mTORCl et mTORC2, ainsi que les kinases en amont qui régulent mTOR. Plusieurs drogues ciblant mTORCl, telles que la rapamycine et la curcumine, affectent l'interaction entre mTOR et un composant spécifique de mTORCl, raptor. Dans cette étude, nous nous sommes intéressés aux mécanismes moléculaires des drogues qui ciblent mTORCl, ainsi que leur effet déstabilisant sur l'interaction entre mTOR et raptor dans des lignées cellulaires de lymphomes. Nous avons démontré que raptor était clivé en un fragment de lOOkDa après traitement avec la rapamycine, la curcumine, l'étoposide, la cisplatine, la staurosporine et le ligand Fas (FasL). Etant donné que ces drogues ont été décrites comme induisant I'apoptose, l'utilisation d'un inhibiteur de caspases (z- VAD-fmk) a révélé que le clivage de raptor, lors de la mort cellulaire, était dépendant des caspases. Des essais caspases in vitro ont permis d'identifier la caspase-6 (ainsi que probablement d'autres caspases) comme étant une protéase impliquée dans le clivage de raptor. La séquence protéique de raptor a montré potentiellement plusieurs sites de clivage de caspases aux extrémités amino-terminale et carboxy-terminale. La mutagénèse a permis d'identifier les sites de clivages de raptor par les caspases comme étant DEAD LTD (acides aminés 17-23) et DDADD (acides aminés 939¬943). De plus, le clivage de raptor corrèle avec l'inhibition de l'activité de mTORCl envers ces substrats (S6K et 4E-BP1). Nous avons aussi observé que le clivage de raptor affaiblissait l'interaction entre mTOR et raptor, ce qui indique que ce clivage est une étape critique dans l'inhibition de mTORCl durant I'apoptose. Pour terminer, la mutagénèse du site de clivage de raptor DDADD a montré une résistance à la mort cellulaire de cellules cancéreuses. Notre travail de recherche a révélé un nouveau mécanisme moléculaire qui module l'organisation et l'activité de mTORCl, ce qui peut être d'un grand intérêt pour les recherches dans le domaine de mTOR ainsi que pour la découverte de molécules ciblant mTORCl. -- The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase, which is highly conserved from yeast to humans. Two different mTOR complexes exist: the mTOR complex 1 (mTORCl) and the mTOR complex 2 (mTORC2). They positively regulate anabolic processes (protein and lipid synthesis, energy metabolism, cytoskeleton organization, cell survival) and negatively regulate catabolic pathways (autophagy, lysosome biogenesis). The mTORCl and mTORC2 respond to mitogenic stimuli such as amino acids, glucose, growth factors, energy levels (ATP) and oxygen levels and drive essential cellular growth pathways. The mTORCl pathway can be found hyperactivated in numerous human cancers. As various cellular pathways converge and regulate mTORCl and mTORC2, mutations in upstream protein kinases can lead to a deregulated mTOR activation. Different therapeutic strategies have been developped to target mTORCl, mTORC2, as well as upstream protein kinases regulating mTOR pathways. Various drugs targeting mTORCl, such as rapamycin and curcumin, affect the interaction between mTOR and a specific mTORCl component, raptor. In this study, we investigated the molecular mechanisms of drugs targeting mTORCl, as well as their destabilizing effect on the mTOR-raptor interaction in lymphoma cell lines. We demonstrated that raptor was processed into a lOOkDa fragment after treatment with rapamycin, curcumin, etoposide, cisplatin, staurosporine and FasL. As these drugs were reported to induce apoptosis, the use of a pan-caspase inhibitor (z-VAD-fmk) revealed that the cleavage of raptor under cell death was caspase-dependent. In vitro caspase assays were performed to identify caspases-6 (and probably other caspases) as an important cysteine protease implicated in the cleavage of raptor. Analysis of raptor protein sequence showed several putative caspase-specific cleavage sites at the N-terminal and the C-terminal ends. Mutagenesis studies allowed us to identify the DEADLTD (amino acids 17-23) and the DDADD (amino acids 939-943) as the caspase-dependent cleavage residues of raptor. Furthermore, the cleavage of raptor correlated with inhibition of mTORCl activity towards its specific targets (4E-BP1 and S6K). We also highlighted that raptor processing weakened the interaction between mTOR and raptor, indicating that raptor cleavage is a critical step in the mTORCl inhibition process during apoptosis. Finally, mutagenesis of raptor C-terminal cleavage site (DDADD) conferred resistance to the chemotherapeutic-mediated cell death cascade of cancer cell. Our research work highlighted a new molecular mechanism modulating mTORCl organization and activity, which can be of great interest in the mTOR field research and for designing drugs trageting mTORCl.