30 resultados para Polymerization of methyl methacrylate
Resumo:
At least 10% of glioblastoma relapses occur at distant and even contralateral locations. This disseminated growth limits surgical intervention and contributes to neurological morbidity. Preclinical data pointed toward a role for temozolomide (TMZ) in reducing radiotherapy-induced glioma cell invasiveness. Our objective was to develop and validate a new analysis tool of MRI data to examine the clinical recurrence pattern of glioblastomas. MRIcro software was used to map the location and extent of initial preoperative and recurrent tumors on MRI of 63 patients in the European Organisation for Research and Treatment of Cancer (EORTC) 26981/22981/National Cancer Institute of Canada (NCIC) CE.3 study into the same stereotaxic space. This allowed us to examine changes of site and distance between the initial and the recurrent tumor on the group level. Thirty of the 63 patients were treated using radiotherapy, while the other patients completed a radiotherapy-plus-TMZ treatment. Baseline characteristics (median age, KPS) and outcome data (progression-free survival, overall survival) of the patients included in this analysis resemble those of the general study cohort. The patient groups did not differ in the promoter methylation status of methyl guanine methyltransferase (MGMT). Overall frequency of distant recurrences was 20%. Analysis of recurrence patterns revealed no difference between the groups in the size of the recurrent tumor or in the differential effect on the distance of the recurrences from the preoperative tumor location. The data show the feasibility of groupwise recurrence pattern analysis. An effect of TMZ treatment on the recurrence pattern in the EORTC 26981/22981/NCIC CE.3 study could not be demonstrated.
Resumo:
It is likely that during this century polymers based on renewable materials will gradually replace industrial polymers based on petrochemicals. This chapter gives an overview of the current status of research on plant biopolymers that are used as a material in non-food applications. We cover technical and scientific bottlenecks in the production of novel or improved materials, and the potential of using transgenic or alternative crops in overcoming these bottlenecks. Four classes of biopolymers will be discussed: starch, proteins, natural rubber, and poly-beta-hydroxyalkanoates. Renewable polymers produced by chemical polymerization of monomers derived from sugars, vegetable oil, or proteins, are not considered here.
Resumo:
Cell division in Gram-negative bacteria involves the co-ordinated invagination of the three cell envelope layers to form two new daughter cell poles. This complex process starts with the polymerization of the tubulin-like protein FtsZ into a Z-ring at mid-cell, which drives cytokinesis and recruits numerous other proteins to the division site. These proteins are involved in Z-ring constriction, inner- and outer-membrane invagination, peptidoglycan remodelling and daughter cell separation. Three papers in this issue of Molecular Microbiology, from the teams of Lucy Shapiro, Martin Thanbichler and Christine Jacobs-Wagner, describe a novel protein, called DipM for Division Involved Protein with LysM domains, that is required for cell division in Caulobacter crescentus. DipM localizes to the mid-cell during cell division, where it is necessary for the hydrolysis of the septal peptidoglycan to remodel the cell wall. Loss of DipM results in severe defects in cell envelope constriction, which is deleterious under fast-growth conditions. State-of-the-art microscopy experiments reveal that the peptidoglycan is thicker and that the cell wall is incorrectly organized in DipM-depleted cells compared with wild-type cells, demonstrating that DipM is essential for reorganizing the cell wall at the division site, for envelope invagination and cell separation in Caulobacter.
Resumo:
Micelles formed from amphiphilic block copolymers have been explored in recent years as carriers for hydrophobic drugs. In an aqueous environment, the hydrophobic blocks form the core of the micelle, which can host lipophilic drugs, while the hydrophilic blocks form the corona or outer shell and stabilize the interface between the hydrophobic core and the external medium. In the present work, mesophase behavior and drug encapsulation were explored in the AB block copolymeric amphiphile composed of poly(ethylene glycol) (PEG) as a hydrophile and poly(propylene sulfide) PPS as a hydrophobe, using the immunosuppressive drug cyclosporin A (CsA) as an example of a highly hydrophobic drug. Block copolymers with a degree of polymerization of 44 on the PEG and of 10, 20 and 40 on the PPS respectively (abbreviated as PEG44-b-PPS10, PEG44-b-PPS20, PEG44-b-PPS40) were synthesized and characterized. Drug-loaded polymeric micelles were obtained by the cosolvent displacement method as well as the remarkably simple method of dispersing the warm polymer melt, with drug dissolved therein, in warm water. Effective drug solubility up to 2 mg/mL in aqueous media was facilitated by the PEG- b-PPS micelles, with loading levels up to 19% w/w being achieved. Release was burst-free and sustained over periods of 9-12 days. These micelles demonstrate interesting solubilization characteristics, due to the low glass transition temperature, highly hydrophobic nature, and good solvent properties of the PPS block
Resumo:
Inducible defenses, which provide enhanced resistance after initial attack, are nearly universal in plants. This defense signaling cascade is mediated by the synthesis, movement, and perception of jasmonic acid and related plant metabolites. To characterize the long-term persistence of plant immunity, we challenged Arabidopsis (Arabidopsis thaliana) and tomato (Solanum lycopersicum) with caterpillar herbivory, application of methyl jasmonate, or mechanical damage during vegetative growth and assessed plant resistance in subsequent generations. Here, we show that induced resistance was associated with transgenerational priming of jasmonic acid-dependent defense responses in both species, caused caterpillars to grow up to 50% smaller than on control plants, and persisted for two generations in Arabidopsis. Arabidopsis mutants that are deficient in jasmonate perception (coronatine insensitive1) or in the biogenesis of small interfering RNA (dicer-like2 dicer-like3 dicer-like4 and nuclear RNA polymerase d2a nuclear RNA polymerase d2b) do not exhibit inherited resistance. The observation of inherited resistance in both the Brassicaceae and Solanaceae suggests that this trait may be more widely distributed in plants. Epigenetic resistance to herbivory thus represents a phenotypically plastic mechanism for enhanced defense across generations.
Resumo:
Experimental evidence indicates a role of the N-methyl-D-aspartate receptor in the pathogenesis of brain injury occurring during cardiac surgery with cardiopulmonary bypass (CPB). Dextromethorphan is a noncompetitive antagonist of this receptor with a favorable safety profile. Thirteen children age 3-36 months undergoing cardiac surgery with expected CPB of 60 minutes or more were randomly assigned to treatment with dextromethorphan (36-38 mg/kg/day) or placebo administered by naso-gastric tube. Dextromethorphan was absorbed well and reached putative therapeutic levels in blood and cerebrospinal fluid. Adverse effects were not observed. Mild hemiparesis developed after operation in one child of each group, and severe encephalopathy in one of the placebo group. Sharp waves were recorded in postoperative continuous electroencephalography in all placebo (n = 7) but only in 2/6 dextromethorphan treated children (p = 0.02). Pre- and postoperative cranial magnetic resonance imaging (MRI) revealed less pronounced ventricular enlargement in the dextromethorphan group (not significant). An increase of periventricular white matter lesions was visible in two placebo-treated children only. No elevations of cerebrospinal fluid enzymes were observed in either group. Although children with dextromethorphan showed less abnormalities in electroencephalography and MRI, dissimilarities of the treatment groups by chance diminished conclusions to possible protective effects of dextromethorphan at this time.
Resumo:
Methyl-CpG Binding Domain (MBD) proteins are thought to be key molecules in the interpretation of DNA methylation signals leading to gene silencing through recruitment of chromatin remodeling complexes. In cancer, the MBD-family member, MBD2, may be primarily involved in the repression of genes exhibiting methylated CpG at their 5' end. Here we ask whether MBD2 randomly associates methylated sequences, producing chance effects on transcription, or exhibits a more specific recognition of some methylated regions. Using chromatin and DNA immunoprecipitation, we analyzed MBD2 and RNA polymerase II deposition and DNA methylation in HeLa cells on arrays representing 25,500 promoter regions. This first whole-genome mapping revealed the preferential localization of MBD2 near transcription start sites (TSSs), within the region analyzed, 7.5 kb upstream through 2.45 kb downstream of 5' transcription start sites. Probe by probe analysis correlated MBD2 deposition and DNA methylation. Motif analysis did not reveal specific sequence motifs; however, CCG and CGC sequences seem to be overrepresented. Nonrandom association (multiple correspondence analysis, p < 0.0001) between silent genes, DNA methylation and MBD2 binding was observed. The association between MBD2 binding and transcriptional repression weakened as the distance between binding site and TSS increased, suggesting that MBD2 represses transcriptional initiation. This hypothesis may represent a functional explanation for the preferential binding of MBD2 at methyl-CpG in TSS regions.
Design of a Control Slide for Cyanoacrylate Polymerization : Application to the CA-Bluestar Sequence
Resumo:
Casework expercience has shown that, in some cases, long exposures of surfaces subjected to cyanoacrylate (CA) fuming had detrimental effects on the subsequent application of Bluestar. This study aimed to develop a control mechanism to monitor the amount of CA deposited prior to the subsequent treatment. A control slide bearing spots of sodium hydroxide (NaOH) of known concentrations and volume was designed and validated against both scanning electron microscopy (SEM) observations and latent print examiners' assessments of the quality of the developed marks. The control slide allows one to define three levels of development that were used to monitor the Bluestar reaction on depleting footwear marks left in diluted blood. The appropriate conditions for a successful application of both CA and Bluestar were determined.
Resumo:
Glutamate was previously shown to enhance aerobic glycolysis i.e. increase glucose utilization and lactate production with no change in oxygen levels, in mouse cortical astrocytes by a mechanism involving glutamate uptake. It is reported here that a similar response is produced in both hippocampal and cerebellar astrocytes. Application of the cognitive-enhancing drug CX546 promoted further enhancement of glucose utilization by astrocytes from each brain area following glutamate exposure. alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors represent the purported molecular target of cognitive-enhancing drugs such as CX546, and the presence of AMPA receptor subunits GluR1-4 was evidenced in astrocytes from all three regions by immunocytochemistry. AMPA itself did not stimulate aerobic glycolysis, but in the presence of CX546, a strong enhancement of glucose utilization and lactate production was obtained in cortical, hippocampal and cerebellar astrocytes. The effect of CX546 was concentration-dependent, with an EC(50) of 93.2 microm in cortical astrocytes. AMPA-induced glucose utilization in the presence of CX546 was prevented by the AMPA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and the negative modulator GYKI 52466. In addition, the metabolic effect of CX546 in the presence of AMPA was mimicked by the AMPA receptor modulator cyclothiazide. Our data suggest that astrocyte energetics represents a novel target for cognitive-enhancing drugs acting as AMPA receptor modulators.
Resumo:
Aging adults represent the fastest growing population segment in many countries. Physiological and metabolic changes in the aging process may alter how aging adults biologically respond to pollutants. In a controlled human toxicokinetic study (exposure chamber; 12 m³), aging volunteers (n=10; >58 years) were exposed to propylene glycol monomethyl ether (PGME, CAS no. 107-98-2) at 50 ppm for 6 h. The dose-dependent renal excretion of oxidative metabolites, conjugated and free PGME could potentially be altered by age. AIMS: (1) Compare PGME toxicokinetic profiles between aging and young volunteers (20-25 years) and gender; (2) test the predictive power of a compartmental toxicokinetic (TK) model developed for aging persons against urinary PGME concentrations found in this study. METHODS: Urine samples were collected before, during, and after the exposure. Urinary PGME was quantified by capillary GC/FID. RESULTS: Differences in urinary PGME profiles were not noted between genders but between age groups. Metabolic parameters had to be changed to fit the age adjusted TK model to the experimental results, implying a slower enzymatic pathway in the aging volunteers. For an appropriate exposure assessment, urinary total PGME should be quantified. CONCLUSION: Age is a factor that should be considered when biological limit values are developed.
Resumo:
BACKGROUND: There is some evidence that dextromethorphan (DM) is effective as a pre-emptive analgesic agent. DM is mainly metabolized to dextrorphan (DOR) by CYP2D6 whose activity can be inhibited by pharmacologic intervention. OBJECTIVES: To investigate the efficacy of DM as a pre-emptive analgesic agent and describe the population pharmacokinetics in the presence of normal and poor CYP2D6 metabolism in acute post-operative pain. STUDY DESIGN: Double blind, randomized, placebo-controlled trial SETTING: Post-surgical analgesic consumption after knee ligament surgery, a setting of acute pain. METHODS: Forty patients were randomized to a single oral dose of 50 mg quinidine or placebo, administered 12 hours before 50 mg DM. Patients were genotyped for the major CYP2D6 and ABCB1 variants and phenotyped for CYP2D6 using urine DM/DOR metabolic ratios and blood samples for population pharmacokinetic modeling. RESULTS: Quinidine was effective in inhibiting CYP2D6 activity, with 2-fold reduction of DM to DOR biotransformation clearance, prolonged DM half-life, and increased DM systemic availability. Patients in the quinidine group required significantly less often NSAIDs than patients in the placebo group (35.3% vs. 75.0%, P = 0.022). The odds ratio for NSAID consumption in the placebo vs. quinidine group was 5.5 (95% confidence interval (CI) 1.3 - 22.7) at 48 hours after surgery. LIMITATIONS: While this study shows an impact of DM on pre-emptive analgesia and is mechanistically interesting, the findings need to be confirmed in larger trials. CONCLUSION: CYP2D6 inhibition by quinidine influenced the pre-emptive analgesic effectiveness of DM confirming that CYP2D6 phenotypic switch increases the neuromodulatory effect of oral dextromethorphan.
Resumo:
The antidepressant selective serotonin transporter inhibitors (SSRIs) are clinically active after a delay of several weeks. Indeed, the rapid increase of serotonin (5-HT) caused by SSRIs, stimulates the 5-HT1A autoreceptors, which exert a negative feedback on the 5-HT neurotransmission. Only when autoreceptors are desensitized, can SSRIs exert their therapeutic activity. The 5-HT1A receptor antagonist pindolol has been used to accelerate the clinical effects of antidepressant by preventing the negative feedback. Using the a-[11C]methyl-L-tryptophan/positron emission tomography (PET), the goal of the present double-blind, randomized study was to compare the changes in a-[11C]methyl-L-tryptophan trapping, an index of serotonin synthesis, in patients suffering from unipolar depression treated with the SSRI citalopram (20 mg/day) plus placebo versus patients treated with citalopram plus pindol (7.5 mg/day). PET and Hamilton depression rating scale (HDRS-17) were performed at baseline, and after 10 and 24 days of antidepressant treatment. Results show that the combination citalopram plus pindol, compared to citalopram alone shows a more rapid and greater increase of an index of 5-HT synthesis in prefrontal cortex (BA 9). This research is the first human PET study demonstrating that, after 24 days, the combination SSRIs plus pindolol produces a greater increase of the metabolism of serotonin in the prefrontal cortex, an area associated to depressive symptoms.
Resumo:
There is a need for more efficient methods giving insight into the complex mechanisms of neurotoxicity. Testing strategies including in vitro methods have been proposed to comply with this requirement. With the present study we aimed to develop a novel in vitro approach which mimics in vivo complexity, detects neurotoxicity comprehensively, and provides mechanistic insight. For this purpose we combined rat primary re-aggregating brain cell cultures with a mass spectrometry (MS)-based metabolomics approach. For the proof of principle we treated developing re-aggregating brain cell cultures for 48h with the neurotoxicant methyl mercury chloride (0.1-100muM) and the brain stimulant caffeine (1-100muM) and acquired cellular metabolic profiles. To detect toxicant-induced metabolic alterations the profiles were analysed using commercial software which revealed patterns in the multi-parametric dataset by principal component analyses (PCA), and recognised the most significantly altered metabolites. PCA revealed concentration-dependent cluster formations for methyl mercury chloride (0.1-1muM), and treatment-dependent cluster formations for caffeine (1-100muM) at sub-cytotoxic concentrations. Four relevant metabolites responsible for the concentration-dependent alterations following methyl mercury chloride treatment could be identified using MS-MS fragmentation analysis. These were gamma-aminobutyric acid, choline, glutamine, creatine and spermine. Their respective mass ion intensities demonstrated metabolic alterations in line with the literature and suggest that the metabolites could be biomarkers for mechanisms of neurotoxicity or neuroprotection. In addition, we evaluated whether the approach could identify neurotoxic potential by testing eight compounds which have target organ toxicity in the liver, kidney or brain at sub-cytotoxic concentrations. PCA revealed cluster formations largely dependent on target organ toxicity indicating possible potential for the development of a neurotoxicity prediction model. With such results it could be useful to perform a validation study to determine the reliability, relevance and applicability of this approach to neurotoxicity screening. Thus, for the first time we show the benefits and utility of in vitro metabolomics to comprehensively detect neurotoxicity and to discover new biomarkers.
Resumo:
Stimulants are banned in-competition for all categories of sports by the World Anti-Doping Agency. A simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) assay employing electrospray ionisation in positive mode was developed in that work for the quantification in urine specimens of 4-methyl-2-hexaneamine, a primary amine exhibiting sympathomimetic properties. Following a simple pretreatment procedure, the analyte was separated using a gradient mobile phase on reverse phase C8 column. Selected reaction monitoring m/z 116.2-->57.3 was specific for detection of 4-methyl-2-hexaneamine and the assay exhibited a linear dynamic range of 50-700 ng/mL. The validated method has been successfully applied to analyze the target compound in food supplements as well as in urine specimens. The administered drug (40 mg) was detected at the level of 350 ng/mL in the urine up to 4 days.