362 resultados para Phenotypic
Resumo:
GnRH neurons provide the primary driving force upon the neuroendocrine reproductive axis. Here we used GnV-3 cells, a model of conditionally immortalized GnRH-expressing neurons, to perform an analysis of cell cycle and compare the gene expression profile of proliferating cells with differentiated cells. In the proliferation medium, 45 ± 1.5% of GnV-3 cells are in S-phase by FACS analysis. In the differentiation medium, only 9 ± 0.9% of them are in S-phase, and they acquire the characteristic bipolar shape displayed by preoptic GnRH neurons in vivo. In addition, GnV-3 cells in the differentiated state exhibit electrophysiological properties characteristic of neurons. Transcriptomic analysis identified up-regulation of 1931 genes and down-regulation of 1270 genes in cells grown in the differentiation medium compared to cells in the proliferation medium. Subsequent gene ontology study indicated that genes over-expressed in proliferating GnV-3 cells were mainly involved in cell cycle regulations, whereas genes over-expressed in differentiated cells were mainly involved in processes of differentiation, neurogenesis and neuronal morphogenesis. Taken together, these data demonstrate the occurrence of morphological and physiological changes in GnV-3 cells between the proliferating and the differentiated state. Moreover, the genes differentially regulated between these two different states are providing novel pathways potentially important for a better understanding of the physiology of mature GnRH neurons.
Resumo:
Understanding the genomic basis of evolutionary adaptation requires insight into the molecular basis underlying phenotypic variation. However, even changes in molecular pathways associated with extreme variation, gains and losses of specific phenotypes, remain largely uncharacterized. Here, we investigate the large interspecific differences in the ability to survive infection by parasitoids across 11 Drosophila species and identify genomic changes associated with gains and losses of parasitoid resistance. We show that a cellular immune defense, encapsulation, and the production of a specialized blood cell, lamellocytes, are restricted to a sublineage of Drosophila, but that encapsulation is absent in one species of this sublineage, Drosophila sechellia. Our comparative analyses of hemopoiesis pathway genes and of genes differentially expressed during the encapsulation response revealed that hemopoiesis-associated genes are highly conserved and present in all species independently of their resistance. In contrast, 11 genes that are differentially expressed during the response to parasitoids are novel genes, specific to the Drosophila sublineage capable of lamellocyte-mediated encapsulation. These novel genes, which are predominantly expressed in hemocytes, arose via duplications, whereby five of them also showed signatures of positive selection, as expected if they were recruited for new functions. Three of these novel genes further showed large-scale and presumably loss-of-function sequence changes in D. sechellia, consistent with the loss of resistance in this species. In combination, these convergent lines of evidence suggest that co-option of duplicated genes in existing pathways and subsequent neofunctionalization are likely to have contributed to the evolution of the lamellocyte-mediated encapsulation in Drosophila.
Resumo:
The Spanish sand racer (Psammodromus hispanicus) has been recently split into three distinct species: P. hispanicus, P. edwardsianus, and P. occidentalis. Some morphological differences have been reported but there is as yet no description allowing unambiguous identification of the three species. Here, we describe differentiation in body measurements, scalation traits, and colour traits as well as in the degree of sexual dimorphism. Our results show that P. edwardsianus can be easily distinguished by the presence of a supralabial scale below the subocular scale, which is absent in the other two species. Psammodromus hispanicus and P. occidentalis can be distinguished by the number of femoral pores, throat scales and ocelli, and the relative width of the anal scale. The degree of sexual size dimorphism and sexual colour dimorphism substantially differs among species, suggesting that different scenarios of sexual and natural selection may exist for each species. Moreover, sexually selected traits (nuptial colouration, ocelli, and femoral pores) significantly differ among species, suggesting that visual and chemical communication may also differ among species. Such differences could prevent reproduction and gene flow at secondary contact zones, potentially reinforcing isolation and speciation within this group of lizards.
Resumo:
Le Syndrome de Bruck (Bruck Syndrome; BS) est une maladie autosomique récessive assemblant la combinaison inhabituelle de fragilité osseuse semblable à celle de l'Ostéogenèse Imparfaite (0I) avec des contractures congénitales tendineuses et cutanées des grandes articulations («ptérygia»). Les cas décrits jusqu'à ce jour mettent en évidence une grande hétérogénéité du tableau clinique, liée en partie au manque d'un diagnostic biochimique ou moléculaire. Nous savons que dans le BS les gènes codant pour le collagène 1 ne sont pas mutés, mais savons néanmoins, grâce à l'étude du collagène extrait de biopsies osseuses, qu'il y a un déficit d'hydroxylation des résidus de lysine dans les télopeptides du collagène 1 qui servent à la formation des liens intermoléculaires (crosslinks) et donc à la stabilisation des fibres de collagène. Un locus génétique du BS à été mappé sur 17q12, mais le gène responsable sur ce locus reste inconnu; plus récemment, deux mutations dans le gène de la lysyl hydroxylase 2 (PLOD2, position chromosomique 3q23-q24) ont été identifiées, démontrant l'hétérogénéité génétique du ES. La proportion de ES liée à 17p22 (BS type 1) et celle liée à une mutation dans PLOD2 (BS type 2) est encore incertaine et nous manquons de données sur la corrélation phenotype-génotype. Nous avons étudié le cas d'un garçon avec des contractures et des ptérygia dès la naissance, combinées à une ostéopénie sévère de type OI menant à des fractures multiples. Ses urines contenaient une quantité élevée d'hydroxyproline, indiquant un remaniement important du tissu osseux, mais peu de produits de dégradation des crosslinks du collagène, indiquant donc une réduction de la proportion de crosslinks dans le collagène in vivo. Nous avons pu démontrer chez lui la présence d'une nouvelle mutation homozygote dans le gène PLOD2 menant à une substitution Arg598His; les deux parents du sujet étaient hétérozygotes pour la mutation et celle-ci était absente dans notre population témoin. La mutation est adjacente aux deux mutations rapportées précédemment (Gly601Val et Thr608Ile), ce qui suggère la présence d'un ''hotspot'' mutationnel mais aussi d'une région de grande importance fonctionnelle sur PLOD2 : cette observation est importante pour la création d'inhibiteurs de PLOD2, recherchés en ce moment pour le traitement de la fibrose. La combinaison de ptérygia et de fragilité osseuse, comme illustrée par notre patient est apparemment contradictoire et donc difficilement explicable mais indique que l'hydroxylation des résidus lysyl des télopeptides est importante non seulement pour la stabilité osseuse mais aussi dans la morphogénèse et la formation des articulations dans la période prénatale. Finalement, la mesure des produits de dégradation du collagène dans l'urine et l'analyse de mutation de PLOD2 permet le diagnostic du syndrome de Bruck et permet de le différencier de l'Osteogénèse Imparfaite. -- Bruck syndrome (BS) is a recessively-inherited phenotypic disorder featuring the unusual combination of skeletal changes resembling osteogenesis imperfecta (0I) with congenital contractures of the large joints. Clinical heterogeneity is apparent in cases reported thus far. While the genes coding for collagen 1 chains are unaffected in BS, there is biochemical evidence for a defect in the hydroxylation of lysine residues in collagen 1 telopeptides. One BS locus has been mapped at 17p12, but more recently, two mutations in the lysyl hydroxylase 2 gene (PLOD2, 3q23-q24) have been identified in BS, showing genetic heterogeneity. The proportion of BS cases linked to 17p22 (BS type 1) or caused by mutations in PLOD2 (BS type 2) is still uncertain, and phenotypic correlations are lacking. We report on a boy who had congenital contractures with pterygia at birth and severe 0I-like osteopenia and multiple frac-tures. His urine contained high amounts of hydroxyproline but low amounts of collagen crosslinks degradation products; and he was shown to be homozygous for a novel mutation leading to an Arg598His substitution in PLOD2. The mutation is adjacent to the two mutations previously reported (Gly601Val and Thr608Ile), suggesting a functionally important hotspot in PLOD2. The combination of pterygia with bone fragility, as illustrated by this case, is difficult to explain; it suggests that telopeptide lysyl hydroxylation must be involved in prenatal joint formation and morphogenesis. Collagen degradation products in urine and mutation analysis ofPLOD2 maybe used to diagnose BS and differentiate it from M.
Resumo:
Arbuscular mycorrhizal fungi (AMF) are highly successful plant symbionts. They reproduce clonally producing multinucleate spores. It has been suggested that some AMF harbor genetically different nuclei. However, recent advances in sequencing the Glomus irregulare genome have indicated very low within-fungus polymorphism. We tested the null hypothesis that, with no genetic differences among nuclei, no significant genetic or phenotypic variation would occur among clonal single spore lines generated from one initial AMF spore. Furthermore, no additional variation would be expected in the following generations of single spore lines. Genetic diversity contained in one initial spore repeatedly gave rise to genetically different variants of the fungus with novel phenotypes. The genetic changes represented quantitative changes in allele frequencies, most probably as a result of changes in the frequency of genetic variation partitioned on different nuclei. The genetic and phenotypic variation is remarkable, given that it arose repeatedly from one clonal individual. Our results highlight the dynamic nature of AMF genetics. Even though within-fungus genetic variation is low, some is probably partitioned among nuclei and potentially causes changes in the phenotype. Our results are important for understanding AMF genetics, as well as for researchers and biotechnologists hoping to use AMF genetic diversity for the improvement of AMF inoculum.
Resumo:
Peripheral T-cell lymphoma, not otherwise specified is a heterogeneous group of aggressive neoplasms with indistinct borders. By gene expression profiling we previously reported unsupervised clusters of peripheral T-cell lymphomas, not otherwise specified correlating with CD30 expression. In this work we extended the analysis of peripheral T-cell lymphoma molecular profiles to prototypical CD30(+) peripheral T-cell lymphomas (anaplastic large cell lymphomas), and validated mRNA expression profiles at the protein level. Existing transcriptomic datasets from peripheral T-cell lymphomas, not otherwise specified and anaplastic large cell lymphomas were reanalyzed. Twenty-one markers were selected for immunohistochemical validation on 80 peripheral T-cell lymphoma samples (not otherwise specified, CD30(+) and CD30(-); anaplastic large cell lymphomas, ALK(+) and ALK(-)), and differences between subgroups were assessed. Clinical follow-up was recorded. Compared to CD30(-) tumors, CD30(+) peripheral T-cell lymphomas, not otherwise specified were significantly enriched in ALK(-) anaplastic large cell lymphoma-related genes. By immunohistochemistry, CD30(+) peripheral T-cell lymphomas, not otherwise specified differed significantly from CD30(-) samples [down-regulated expression of T-cell receptor-associated proximal tyrosine kinases (Lck, Fyn, Itk) and of proteins involved in T-cell differentiation/activation (CD69, ICOS, CD52, NFATc2); upregulation of JunB and MUM1], while overlapping with anaplastic large cell lymphomas. CD30(-) peripheral T-cell lymphomas, not otherwise specified tended to have an inferior clinical outcome compared to the CD30(+) subgroups. In conclusion, we show molecular and phenotypic features common to CD30(+) peripheral T-cell lymphomas, and significant differences between CD30(-) and CD30(+) peripheral T-cell lymphomas, not otherwise specified, suggesting that CD30 expression might delineate two biologically distinct subgroups.
Resumo:
Atherogenic dyslipidemia, manifest by low HDL-cholesterol and high TG levels, is an important component of ATP-III defined metabolic syndrome. Here, we dissected the phenotypic and genetic architecture of these traits by assessing their relationships with other metabolically relevant measures, including plasma adipo-cytokines, highly sensitive C-reactive protein (hsCRP) and LDL particle size, in a large family data set (n=2800) and in an independent set of dyslipidemic cases (n=716) and normolipidemic controls (n=1073). We explored the relationships among these phenotypes using variable clustering and then estimated their genetic heritabilities and cross-trait correlations. In families, four clusters explained 61% of the total variance, with one adiposity-related cluster (including hsCRP), one BP-related cluster, and two lipid-related clusters (HDL-C, TG, adiponectin and LDL particle size; apoB and non-HDL-C). A similar structure was observed in dyslipidemic cases and normolipidemic controls. The genetic correlations in the families largely paralleled the phenotype clustering results, suggesting that common genes having pleiotropic effects contributed to the correlations observed. In summary, our analyses support a model of metabolic syndrome with two major components, body fat and lipids, each with two subcomponents, and quantifies their degree of overlap with each other and with metabolic-syndrome related measures (adipokines, LDL particle size and hsCRP).
Resumo:
BACKGROUND: Transgressive segregation describes the occurrence of novel phenotypes in hybrids with extreme trait values not observed in either parental species. A previously experimentally untested prediction is that the amount of transgression increases with the genetic distance between hybridizing species. This follows from QTL studies suggesting that transgression is most commonly due to complementary gene action or epistasis, which become more frequent at larger genetic distances. This is because the number of QTLs fixed for alleles with opposing signs in different species should increase with time since speciation provided that speciation is not driven by disruptive selection. We measured the amount of transgression occurring in hybrids of cichlid fish bred from species pairs with gradually increasing genetic distances and varying phenotypic similarity. Transgression in multi-trait shape phenotypes was quantified using landmark-based geometric morphometric methods. RESULTS: We found that genetic distance explained 52% and 78% of the variation in transgression frequency in F1 and F2 hybrids, respectively. Confirming theoretical predictions, transgression when measured in F2 hybrids, increased linearly with genetic distance between hybridizing species. Phenotypic similarity of species on the other hand was not related to the amount of transgression. CONCLUSION: The commonness and ease with which novel phenotypes are produced in cichlid hybrids between unrelated species has important implications for the interaction of hybridization with adaptation and speciation. Hybridization may generate new genotypes with adaptive potential that did not reside as standing genetic variation in either parental population, potentially enhancing a population's responsiveness to selection. Our results make it conceivable that hybridization contributed to the rapid rates of phenotypic evolution in the large and rapid adaptive radiations of haplochromine cichlids.
Resumo:
Salmonid populations of many rivers are rapidly declining. One possible explanation is that habitat fragmentation increases genetic drift and reduces the populations' potential to adapt to changing environmental conditions. We measured the genetic and eco-morphological diversity of brown trout (Salmo trutta) in a Swiss stream system, using multivariate statistics and Bayesian clustering. We found large genetic and phenotypic variation within only 40 km of stream length. Eighty-eight percent of all pairwise F(ST) comparisons and 50% of the population comparisons in body shape were significant. High success rates of population assignment tests confirmed the distinctiveness of populations in both genotype and phenotype. Spatial analysis revealed that divergence increased with waterway distance, the number of weirs, and stretches of poor habitat between sampling locations, but effects of isolation-by-distance and habitat fragmentation could not be fully disentangled. Stocking intensity varied between streams but did not appear to erode genetic diversity within populations. A lack of association between phenotypic and genetic divergence points to a role of local adaptation or phenotypically plastic responses to habitat heterogeneity. Indeed, body shape could be largely explained by topographic stream slope, and variation in overall phenotype matched the flow regimes of the respective habitats.
Resumo:
Mammals are characterized by specific phenotypic traits that include lactation, hair, and relatively large brains with unique structures. Individual mammalian lineages have, in turn, evolved characteristic traits that distinguish them from others. These include obvious anatom¬ical differences but also differences related to reproduction, life span, cognitive abilities, be¬havior. and disease susceptibility. However, the molecular basis of the diverse mammalian phenotypes and the selective pressures that shaped their evolution remain largely unknown. In the first part of my thesis, I analyzed the genetic factors associated with the origin of a unique mammalian phenotype lactation and I studied the selective pressures that forged the transition from oviparity to viviparity. Using a comparative genomics approach and evolutionary simulations, I showed that the emergence of lactation, as well as the appear¬ance of the casein gene family, significantly reduced selective pressure on the major egg-yolk proteins (the vitellogenin family). This led to a progressive loss of vitellogenins, which - in oviparous species - act as storage proteins for lipids, amino acids, phosphorous and calcium in the isolated egg. The passage to internal fertilization and placentation in therian mam¬mals rendered vitellogenins completely dispensable, which ended in the loss of the whole gene family in this lineage. As illustrated by the vitellogenin study, changes in gene content are one possible underlying factor for the evolution of mammalian-specific phenotypes. However, more subtle genomic changes, such as mutations in protein-coding sequences, can also greatly affect the phenotypes. In particular, it was proposed that changes at the level of gene reg¬ulation could underlie many (or even most) phenotypic differences between species. In the second part of my thesis, I participated in a major comparative study of mammalian tissue transcriptomes, with the goal of understanding how evolutionary forces affected expression patterns in the past 200 million years of mammalian evolution. I showed that, while com¬parisons of gene expressions are in agreement with the known species phylogeny, the rate of expression evolution varies greatly among lineages. Species with low effective population size, such as monotremes and hominoids, showed significantly accelerated rates of gene expression evolution. The most likely explanation for the high rate of gene expression evolution in these lineages is the accumulation of mildly deleterious mutations in regulatory regions, due to the low efficiency of purifying selection. Thus, our observations are in agreement with the nearly neutral theory of molecular evolution. I also describe substantial differences in evolutionary rates between tissues, with brain being the most constrained (especially in primates) and testis significantly accelerated. The rate of gene expression evolution also varies significantly between chromosomes. In particular, I observed an acceleration of gene expression changes on the X chromosome, probably as a result of adaptive processes associated with the origin of therian sex chromosomes. Lastly, I identified several individual genes as well as co-regulated expression modules that have undergone lineage specific expression changes and likely under¬lie various phenotypic innovations in mammals. The methods developed during my thesis, as well as the comprehensive gene content analyses and transcriptomics datasets made available by our group, will likely prove to be useful for further exploratory analyses of the diverse mammalian phenotypes.
Resumo:
OBJECTIVES: The purpose of this study was the qualitative and quantitative assessment of the in vitro effect of HIV-1 protease (PR) mutation 82M on replication capacity and susceptibility to the eight clinically available PR inhibitors (PIs).¦METHODS: The 82M substitution was introduced by site-directed mutagenesis in wild-type subtype B and G strains, as well as reverted back to wild-type in a therapy-failing strain. The recombinant viruses were evaluated for their replication capacity and susceptibility to PIs.¦RESULTS: The single 82M mutation within a wild-type subtype B or G background did not result in drug resistance. However, the in vitro effect of single PR mutations on PI susceptibility is not always distinguishable from wild-type virus, and particular background mutations and polymorphisms are required to detect significant differences in the drug susceptibility profile. Consequently, reverting the 82M mutation back to wild-type (82I) in a subtype G isolate from a patient that failed therapy with multiple other PR mutations did result in significant increases in susceptibility towards indinavir and lopinavir and minor increases in susceptibility towards amprenavir and atazanavir. The presence of the 82M mutation also slightly decreased viral replication, whether it was in the genetic background of subtype B or subtype G.¦CONCLUSIONS: Our results suggest that 82M has an impact on PI susceptibility and that this effect is not due to a compensatory effect on the replication capacity. Because 82M is not observed as a polymorphism in any subtype, these observations support the inclusion of 82M in drug resistance interpretation systems and PI mutation lists.
Resumo:
The factors responsible for the phenotypic heterogeneity of memory CD4 T cells are unclear. In the present study, we have identified a third population of memory CD4 T cells characterized as CD45RA(+)CCR7(-) that, based on its replication history and the homeostatic proliferative capacity, was at an advanced stage of differentiation. Three different phenotypic patterns of memory CD4 T cell responses were delineated under different conditions of antigen (Ag) persistence and load using CD45RA and CCR7 as markers of memory T cells. Mono-phenotypic CD45RA(-)CCR7(+) or CD45RA(-)CCR7(-) CD4 T cell responses were associated with conditions of Ag clearance (tetanus toxoid-specific CD4 T cell response) or Ag persistence and high load (chronic HIV-1 and primary CMV infections), respectively. Multi-phenotypic CD45RA(-)CCR7(+), CD45RA(-)CCR7(-) and CD45RA(+)CCR7(-) CD4 T cell responses were associated with protracted Ag exposure and low load (chronic CMV, EBV and HSV infections and HIV-1 infection in long-term nonprogressors). The mono-phenotypic CD45RA(-)CCR7(+) response was typical of central memory (T(CM)) IL-2-secreting CD4 T cells, the mono-phenotypic CD45RA(-)CCR7(-) response of effector memory (T(EM)) IFN-gamma-secreting CD4 T cells and the multi-phenotypic response of both IL-2- and IFN-gamma-secreting cells. The present results indicate that the heterogeneity of different Ag-specific CD4 T cell responses is regulated by Ag exposure and Ag load.
Resumo:
This analysis is a follow-up to an earlier investigation of 182 genes selected as likely candidate genetic variations conferring susceptibility to anorexia nervosa (AN). As those initial case-control results revealed no statistically significant differences in single nucleotide polymorphisms, herein, we investigate alternative phenotypes associated with AN. In 1762 females, using regression analyses, we examined the following: (i) lowest illness-related attained body mass index; (ii) age at menarche; (iii) drive for thinness; (iv) body dissatisfaction; (v) trait anxiety; (vi) concern over mistakes; and (vii) the anticipatory worry and pessimism versus uninhibited optimism subscale of the harm avoidance scale. After controlling for multiple comparisons, no statistically significant results emerged. Although results must be viewed in the context of limitations of statistical power, the approach illustrates a means of potentially identifying genetic variants conferring susceptibility to AN because less complex phenotypes associated with AN are more proximal to the genotype and may be influenced by fewer genes. Copyright © 2011 John Wiley & Sons, Ltd and Eating Disorders Association.