33 resultados para Pervasive games
Resumo:
Presented is an accurate swimming velocity estimation method using an inertial measurement unit (IMU) by employing a simple biomechanical constraint of motion along with Gaussian process regression to deal with sensor inherent errors. Experimental validation shows a velocity RMS error of 9.0 cm/s and high linear correlation when compared with a commercial tethered reference system. The results confirm the practicality of the presented method to estimate swimming velocity using a single low-cost, body-worn IMU.
Resumo:
Games are powerful and engaging. On average, one billion people spend at least 1 hour a day playing computer and videogames. This is even more true with the younger generations. Our students have become the < digital natives >, the < gamers >, the < virtual generation >. Research shows that those who are most at risk for failure in the traditional classroom setting, also spend more time than their counterparts, using video games. They might strive, given a different learning environment. Educators have the responsibility to align their teaching style to these younger generation learning styles. However, many academics resist the use of computer-assisted learning that has been "created elsewhere". This can be extrapolated to game-based teaching: even if educational games were more widely authored, their adoption would still be limited to the educators who feel a match between the authored games and their own beliefs and practices. Consequently, game-based teaching would be much more widespread if teachers could develop their own games, or at least customize them. Yet, the development and customization of teaching games are complex and costly. This research uses a design science methodology, leveraging gamification techniques, active and cooperative learning theories, as well as immersive sandbox 3D virtual worlds, to develop a method which allows management instructors to transform any off-the-shelf case study into an engaging collaborative gamified experience. This method is applied to marketing case studies, and uses the sandbox virtual world of Second Life. -- Les jeux sont puissants et motivants, En moyenne, un milliard de personnes passent au moins 1 heure par jour jouer à des jeux vidéo sur ordinateur. Ceci se vérifie encore plus avec les jeunes générations, Nos étudiants sont nés à l'ère du numérique, certains les appellent des < gamers >, d'autres la < génération virtuelle >. Les études montrent que les élèves qui se trouvent en échec scolaire dans les salles de classes traditionnelles, passent aussi plus de temps que leurs homologues à jouer à des jeux vidéo. lls pourraient potentiellement briller, si on leur proposait un autre environnement d'apprentissage. Les enseignants ont la responsabilité d'adapter leur style d'enseignement aux styles d'apprentissage de ces jeunes générations. Toutefois, de nombreux professeurs résistent lorsqu'il s'agit d'utiliser des contenus d'apprentissage assisté par ordinateur, développés par d'autres. Ceci peut être extrapolé à l'enseignement par les jeux : même si un plus grand nombre de jeux éducatifs était créé, leur adoption se limiterait tout de même aux éducateurs qui perçoivent une bonne adéquation entre ces jeux et leurs propres convictions et pratiques. Par conséquent, I'enseignement par les jeux serait bien plus répandu si les enseignants pouvaient développer leurs propres jeux, ou au moins les customiser. Mais le développement de jeux pédagogiques est complexe et coûteux. Cette recherche utilise une méthodologie Design Science pour développer, en s'appuyant sur des techniques de ludification, sur les théories de pédagogie active et d'apprentissage coopératif, ainsi que sur les mondes virtuels immersifs < bac à sable > en 3D, une méthode qui permet aux enseignants et formateurs de management, de transformer n'importe quelle étude de cas, provenant par exemple d'une centrale de cas, en une expérience ludique, collaborative et motivante. Cette méthode est appliquée aux études de cas Marketing dans le monde virtuel de Second Life.
Resumo:
Glucocorticoids affect physiology and behaviour, reproduction and potentially sexual selection as well. Shortterm and moderate glucocorticoid elevations are suggested to be adaptive, and prolonged and high elevations may be extremely harmful. This suggests that optimal reproductive strategies, and thus sexual selection, may be dose dependent. Here, we investigate effects of moderate and high elevations of blood corticosterone levels on intra- and intersexual behaviour and mating success of male common lizards Lacerta vivipara. Females showed less interest and more aggressive behaviour towards high corticosterone males and blood corticosterone levels affected male reproductive strategy. Males of moderate and high corticosterone elevations, compared with Control males, showed increased interest (i.e., higher number of chases, tongue extrusions, and approaches) towards females and high corticosterone males initiated more copulation attempts. However, neither increased male interest nor increased copulation attempts resulted in more copulations. This provides evidence for a best-of-a-bad-job strategy, where males with higher corticosterone levels compensated for reduced female interest and increased aggressive female behaviour directed towards them, by showing higher interest and by conducting more copulation attempts. Blood corticosterone levels affected intrasexual selection as well since moderate corticosterone levels positively affected male dominance, but dominance did not affect mating success. These findings underline the importance of female mate choice and are in line with adaptive compensatory behaviours of males. They further show that glucocorticoid effects on behaviour are dose dependent and that they have important implications for sexual selection and social interactions, and might potentially affect Darwinian fitness.
Resumo:
In developmental research, the family has mainly been studied through dyadic interaction. Three-way interactions have received less attention, partly because of their complexity. This difficulty may be overcome by distinguishing between four hierarchically embedded functions in three-way interactions: (1) participation (inclusion of all participants), (2) organization (partners keeping to their roles), (3) focalization (sharing a common focus) and (4) affective contact (being in tune). We document this hierarchical model on a sample of 80 families observed in the Lausanne Trilogue Play situation across four different sites. Hierarchy between functions was demonstrated by means of Guttman scalability coefficient. Given the importance of the child's development in a threesome, the pertinence of this model for family assessment is discussed.
Resumo:
Abstract in English : Ubiquitous Computing is the emerging trend in computing systems. Based on this observation this thesis proposes an analysis of the hardware and environmental constraints that rule pervasive platforms. These constraints have a strong impact on the programming of such platforms. Therefore solutions are proposed to facilitate this programming both at the platform and node levels. The first contribution presented in this document proposes a combination of agentoriented programming with the principles of bio-inspiration (Phylogenesys, Ontogenesys and Epigenesys) to program pervasive platforms such as the PERvasive computing framework for modeling comPLEX virtually Unbounded Systems platform. The second contribution proposes a method to program efficiently parallelizable applications on each computing node of this platform. Résumé en Français : Basée sur le constat que les calculs ubiquitaires vont devenir le paradigme de programmation dans les années à venir, cette thèse propose une analyse des contraintes matérielles et environnementale auxquelles sont soumises les plateformes pervasives. Ces contraintes ayant un impact fort sur la programmation des plateformes. Des solutions sont donc proposées pour faciliter cette programmation tant au niveau de l'ensemble des noeuds qu'au niveau de chacun des noeuds de la plateforme. La première contribution présentée dans ce document propose d'utiliser une alliance de programmation orientée agent avec les grands principes de la bio-inspiration (Phylogénèse, Ontogénèse et Épigénèse). Ceci pour répondres aux contraintes de programmation de plateformes pervasives comme la plateforme PERvasive computing framework for modeling comPLEX virtually Unbounded Systems . La seconde contribution propose quant à elle une méthode permettant de programmer efficacement des applications parallélisable sur chaque noeud de calcul de la plateforme
Resumo:
Cooperation in joint enterprises can easily break down when self-interests are in conflict with collective benefits, causing a tragedy of the commons. In such social dilemmas, the possibility for contributors to invest in a common pool-rewards fund, which will be shared exclusively among contributors, can be powerful for averting the tragedy, as long as the second-order dilemma (i.e. withdrawing contribution to reward funds) can be overcome (e.g. with second-order sanctions). However, the present paper reveals the vulnerability of such pool-rewarding mechanisms to the presence of reward funds raised by defectors and shared among them (i.e. anti-social rewarding), as it causes a cooperation breakdown, even when second-order sanctions are possible. I demonstrate that escaping this social trap requires the additional condition that coalitions of defectors fare poorly compared with pro-socials, with either (i) better rewarding abilities for the latter or (ii) reward funds that are contingent upon the public good produced beforehand, allowing groups of contributors to invest more in reward funds than groups of defectors. These results suggest that the establishment of cooperation through a collective positive incentive mechanism is highly vulnerable to anti-social rewarding and requires additional countermeasures to act in combination with second-order sanctions.
Resumo:
The results of numerous economic games suggest that humans behave more cooperatively than would be expected if they were maximizing selfish interests. It has been argued that this is because individuals gain satisfaction from the success of others, and that such prosocial preferences require a novel evolutionary explanation. However, in previous games, imperfect behavior would automatically lead to an increase in cooperation, making it impossible to decouple any form of mistake or error from prosocial cooperative decisions. Here we empirically test between these alternatives by decoupling imperfect behavior from prosocial preferences in modified versions of the public goods game, in which individuals would maximize their selfish gain by completely (100%) cooperating. We found that, although this led to higher levels of cooperation, it did not lead to full cooperation, and individuals still perceived their group mates as competitors. This is inconsistent with either selfish or prosocial preferences, suggesting that the most parsimonious explanation is imperfect behavior triggered by psychological drives that can prevent both complete defection and complete cooperation. More generally, our results illustrate the caution that must be exercised when interpreting the evolutionary implications of economic experiments, especially the absolute level of cooperation in a particular treatment.
Resumo:
Cooperation and coordination are desirable behaviors that are fundamental for the harmonious development of society. People need to rely on cooperation with other individuals in many aspects of everyday life, such as teamwork and economic exchange in anonymous markets. However, cooperation may easily fall prey to exploitation by selfish individuals who only care about short- term gain. For cooperation to evolve, specific conditions and mechanisms are required, such as kinship, direct and indirect reciprocity through repeated interactions, or external interventions such as punishment. In this dissertation we investigate the effect of the network structure of the population on the evolution of cooperation and coordination. We consider several kinds of static and dynamical network topologies, such as Baraba´si-Albert, social network models and spatial networks. We perform numerical simulations and laboratory experiments using the Prisoner's Dilemma and co- ordination games in order to contrast human behavior with theoretical results. We show by numerical simulations that even a moderate amount of random noise on the Baraba´si-Albert scale-free network links causes a significant loss of cooperation, to the point that cooperation almost vanishes altogether in the Prisoner's Dilemma when the noise rate is high enough. Moreover, when we consider fixed social-like networks we find that current models of social networks may allow cooperation to emerge and to be robust at least as much as in scale-free networks. In the framework of spatial networks, we investigate whether cooperation can evolve and be stable when agents move randomly or performing Le´vy flights in a continuous space. We also consider discrete space adopting purposeful mobility and binary birth-death process to dis- cover emergent cooperative patterns. The fundamental result is that cooperation may be enhanced when this migration is opportunistic or even when agents follow very simple heuristics. In the experimental laboratory, we investigate the issue of social coordination between indi- viduals located on networks of contacts. In contrast to simulations, we find that human players dynamics do not converge to the efficient outcome more often in a social-like network than in a random network. In another experiment, we study the behavior of people who play a pure co- ordination game in a spatial environment in which they can move around and when changing convention is costly. We find that each convention forms homogeneous clusters and is adopted by approximately half of the individuals. When we provide them with global information, i.e., the number of subjects currently adopting one of the conventions, global consensus is reached in most, but not all, cases. Our results allow us to extract the heuristics used by the participants and to build a numerical simulation model that agrees very well with the experiments. Our findings have important implications for policymakers intending to promote specific, desired behaviors in a mobile population. Furthermore, we carry out an experiment with human subjects playing the Prisoner's Dilemma game in a diluted grid where people are able to move around. In contrast to previous results on purposeful rewiring in relational networks, we find no noticeable effect of mobility in space on the level of cooperation. Clusters of cooperators form momentarily but in a few rounds they dissolve as cooperators at the boundaries stop tolerating being cheated upon. Our results highlight the difficulties that mobile agents have to establish a cooperative environment in a spatial setting without a device such as reputation or the possibility of retaliation. i.e. punishment. Finally, we test experimentally the evolution of cooperation in social networks taking into ac- count a setting where we allow people to make or break links at their will. In this work we give particular attention to whether information on an individual's actions is freely available to poten- tial partners or not. Studying the role of information is relevant as information on other people's actions is often not available for free: a recruiting firm may need to call a job candidate's refer- ences, a bank may need to find out about the credit history of a new client, etc. We find that people cooperate almost fully when information on their actions is freely available to their potential part- ners. Cooperation is less likely, however, if people have to pay about half of what they gain from cooperating with a cooperator. Cooperation declines even further if people have to pay a cost that is almost equivalent to the gain from cooperating with a cooperator. Thus, costly information on potential neighbors' actions can undermine the incentive to cooperate in dynamical networks.
Resumo:
Many species are able to learn to associate behaviours with rewards as this gives fitness advantages in changing environments. Social interactions between population members may, however, require more cognitive abilities than simple trial-and-error learning, in particular the capacity to make accurate hypotheses about the material payoff consequences of alternative action combinations. It is unclear in this context whether natural selection necessarily favours individuals to use information about payoffs associated with nontried actions (hypothetical payoffs), as opposed to simple reinforcement of realized payoff. Here, we develop an evolutionary model in which individuals are genetically determined to use either trial-and-error learning or learning based on hypothetical reinforcements, and ask what is the evolutionarily stable learning rule under pairwise symmetric two-action stochastic repeated games played over the individual's lifetime. We analyse through stochastic approximation theory and simulations the learning dynamics on the behavioural timescale, and derive conditions where trial-and-error learning outcompetes hypothetical reinforcement learning on the evolutionary timescale. This occurs in particular under repeated cooperative interactions with the same partner. By contrast, we find that hypothetical reinforcement learners tend to be favoured under random interactions, but stable polymorphisms can also obtain where trial-and-error learners are maintained at a low frequency. We conclude that specific game structures can select for trial-and-error learning even in the absence of costs of cognition, which illustrates that cost-free increased cognition can be counterselected under social interactions.