59 resultados para Parasitic fungi


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arbuscular mycorrhizal fungi are important symbionts that enhance plant growth. They were thought to have been asexual for hundreds of millions of years. A new study reveals that the fungi actually possess highly conserved genetic machinery for completion of meiosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arbuscular mycorrhizal fungi (AMF) form symbioses with most plant species. They are ecologically important determinants of plant growth and diversity. Considerable genetic variation occurs in AMF populations. Thus, plants are exposed to AMF of varying relatedness to each other. Very little is known about either the effects of coexisting AMF on plant growth or which factors influence intraspecific AMF coexistence within roots. No studies have addressed whether the genetics of coexisting AMF, and more specifically their relatedness, influences plant growth and AMF coexistence. Relatedness is expected to influence coexistence between individuals, and it has been suggested that decreasing ability of symbionts to coexist can have negative effects on the growth of the host. We tested the effect of a gradient of AMF genetic relatedness on the growth of two plant species. Increasing relatedness between AMFs lead to markedly greater plant growth (27% biomass increase with closely related compared to distantly related AMF). In one plant species, closely related AMF coexisted in fairly equal proportions but decreasing relatedness lead to a very strong disequilibrium between AMF in roots, indicating much stronger competition. Given the strength of the effects with such a shallow relatedness gradient and the fact that in the field plants are exposed to a steeper gradient, we consider that AMF relatedness can have a strong role in plant growth and the ability of AMF to coexist. We conclude that AMF relatedness is a driver of plant growth and that relatedness is also a strong driver of intraspecific coexistence of these ecologically important symbionts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The richness of the parasitic community associated with social insect colonies has rarely been investigated. Moreover, understanding how hosts and pathogens interact in nature is important to interpret results from laboratory experiments. Here, we assessed the diversity, prevalence and virulence of fungal entomopathogens present around and within colonies of the ant Formica selysi. We detected eight fungal species known to be entomopathogenic in soil sampled from the habitat of ants. Six of these entomopathogens were found in active nests, abandoned nests, and corpses from dump piles or live ants. A systematic search for the presence of three generalist fungal entomopathogens in ant colonies revealed a large variation in their prevalence. The most common of the three pathogens, Paecilomyces lilacinus, was detected in 44% of the colonies. Beauveria bassiana occurred in 17% of the colonies, often in association with P. lilacinus, whereas we did not detect Metarhizium brunneum (formerly M. anisopliae) in active colonies. The three fungal species caused significant mortality to experimentally challenged ants, but varied in their degree of virulence. There was a high level of genetic diversity within B. bassiana isolates, which delineated three genetic strains that also differed significantly in their virulence. Overall, our study indicates that the ants encounter a diversity of fungal entomopathogens in their natural habitat. Moreover, some generalist pathogens vary greatly in their virulence and prevalence in ant colonies, which calls for further studies on the specificity of the interactions between the ant hosts and their fungal pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arbuscular mycorrhizal fungi (AMF) are ecologically important root symbionts of most terrestrial plants. Ecological studies of AMF have concentrated on differences between species; largely assuming little variability within AMF species. Although AMF are clonal, they have evolved to contain a surprisingly high within-species genetic variability, and genetically different nuclei can coexist within individual spores. These traits could potentially lead to within-population genetic variation, causing differences in physiology and symbiotic function in AMF populations, a consequence that has been largely neglected. We found highly significant genetic and phenotypic variation among isolates of a population of Glomus intraradices but relatively low total observed genetic diversity. Because we maintained the isolated population in a constant environment, phenotypic variation can be considered as variation in quantitative genetic traits. In view of the large genetic differences among isolates by randomly sampling two individual spores, <50% of the total observed population genetic diversity is represented. Adding an isolate from a distant population did not increase total observed genetic diversity. Genetic variation exceeded variation in quantitative genetic traits, indicating that selection acted on the population to retain similar traits, which might be because of the multigenomic nature of AMF, where considerable genetic redundancy could buffer the effects of changes in the genetic content of phenotypic traits. These results have direct implications for ecological research and for studying AMF genes, improving commercial AMF inoculum, and understanding evolutionary mechanisms in multigenomic organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endosymbiosis is a mutualistic, parasitic or commensal symbiosis in which one symbiont is living within the body of another organism. Such symbiotic relationship with free-living amoebae and arthropods has been reported with a large biodiversity of microorganisms, encompassing various bacterial clades and to a lesser extent some fungi and viruses. By contrast, current knowledge on symbionts of nematodes is still mainly restricted to Wolbachia and its interaction with filarial worms that lead to increased pathogenicity of the infected nematode. In this review article, we aim to highlight the main characteristics of symbionts in term of their ecology, host cell interactions, parasitism and co-evolution, in order to stimulate future research in a field that remains largely unexplored despite the availability of modern tools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Millions of humans and animals suffer from superficial infections caused by a group of highly specialized filamentous fungi, the dermatophytes, which exclusively infect keratinized host structures. To provide broad insights into the molecular basis of the pathogenicity-associated traits, we report the first genome sequences of two closely phylogenetically related dermatophytes, Arthroderma benhamiae and Trichophyton verrucosum, both of which induce highly inflammatory infections in humans. RESULTS: 97% of the 22.5 megabase genome sequences of A. benhamiae and T. verrucosum are unambiguously alignable and collinear. To unravel dermatophyte-specific virulence-associated traits, we compared sets of potentially pathogenicity-associated proteins, such as secreted proteases and enzymes involved in secondary metabolite production, with those of closely related onygenales (Coccidioides species) and the mould Aspergillus fumigatus. The comparisons revealed expansion of several gene families in dermatophytes and disclosed the peculiarities of the dermatophyte secondary metabolite gene sets. Secretion of proteases and other hydrolytic enzymes by A. benhamiae was proven experimentally by a global secretome analysis during keratin degradation. Molecular insights into the interaction of A. benhamiae with human keratinocytes were obtained for the first time by global transcriptome profiling. Given that A. benhamiae is able to undergo mating, a detailed comparison of the genomes further unraveled the genetic basis of sexual reproduction in this species. CONCLUSIONS: Our results enlighten the genetic basis of fundamental and putatively virulence-related traits of dermatophytes, advancing future research on these medically important pathogens.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résumé Les champignons endomycorhiziens arbusculaires (CEA) forment des symbioses avec la plupart des plantes terrestres. Les CEA influencent la croissance des plantes et la biodiversité. Ils sont supposés avoir évolué de manière asexuée pendant au moins 400 millions d'années et aucune diversification morphologique majeure n'a été constatée. Pour ces raisons, les CEA sont considérés comme d'anciens asexués. Très peu d'espèces sont connues actuellement. Les individus de ces champignons contiennent des noyaux génétiquement différents dans un cytoplasme continu. La signification évolutive, la variabilité et la maintenance des génomes multiples au sein des individus sont inconnues. Ce travail a démontré qu'une population du CEA Glomus intraradices est génétiquement très variable. Nous avons conclu que les plantes hôtes plutôt que la différenciation géographique devraient être responsables de cette grande diversité. Puis nous avons cherché l'existence de recombinaison entre génotypes dans une population. Nous avons détecté un groupe recombinant au sein de la population, ce qui met en doute l'état d'anciens asexués des CEA. Nous avons également détecté l'occurrence de fusions d'hyphes et l'échange de noyaux entre isolats génétiquement différents. La descendance hybride issue de cet échange était viable et distincte phénotypiquement des isolats parentaux. En résumé, ce travail identifie des événements cruciaux dans le cycle de vie des CEA qui ont le potentiel d'influencer l'évolution de génomes multiples. L'étude des conséquences de ces événements sur les interactions avec les plantes hôtes pourrait éclaircir significativement la compréhension de la symbiose entre plantes et CEA. Abstract Arbuscular mycorrhizal fungi (AMF) are important symbionts of most land plants. AMF influence plant growth and biodiversity. Very few extant species are described. AMF are thought to have evolved asexually for at least 400 million years and no major morphological diversification has occurred. Due to these reasons, they were termed `ancient asexuals'. Fungal individuals harbour genetically different nuclei in a continuous cytoplasm. The variability, maintenance and evolutionary significance of multiple genomes within individuals are unknown. This work showed that a population of the AMF Glomus intraradices harbours very high genetic diversity. We concluded that host plants rather than geographic differentiation were responsible for this diversity. Furthermore, we investigated whether recombination occurred among genotypes of a G. intraradices population. The identification of a core group of recombining genotypes in the population refutes the assumption of ancient asexuality in AMF. We found that genetically different isolates can form hyphal fusions and exchange nuclei. The hybrid progeny produced by the exchange was viable and phenotypically distinct from the parental isolates. Taken together, this work provided evidence for key events in the AMF life cycle, that influence the evolution of multiple genomes. Studying the consequences of these events on the interaction with host plants may significantly further the understanding of the AMF-plant symbiosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ancient asexuals directly contradict the evolutionary theories that explain why organisms should evolve a sexual life history. The mutualistic, arbuscular mycorrhizal fungi are thought to have been asexual for approximately 400 million years. In the absence of sex, highly divergent descendants of formerly allelic nucleotide sequences are thought to evolve in a genome. In mycorrhizal fungi, where individual offspring receive hundreds of nuclei from the parent, it has been hypothesized that a population of genetically different nuclei should evolve within one individual. Here we use DNA-DNA fluorescent in situ hybridization to show that genetically different nuclei co-exist in individual arbuscular mycorrhizal fungi. We also show that the population genetics techniques used in other organisms are unsuitable for detecting recombination because the assumptions and underlying processes do not fit the fungal genomic structure shown here. Instead we used a phylogenetic approach to show that the within-individual genetic variation that occurs in arbuscular mycorrhizal fungi probably evolved through accumulation of mutations in an essentially clonal genome, with some infrequent recombination events. We conclude that mycorrhizal fungi have evolved to be multi-genomic.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arbuscular mycorrhizal fungi (AMF) form extremely important mutualistic symbioses with most plants. Their role in nutrient acquisition, plant community structure, plant diversity, and ecosystem productivity and function has been demonstrated in recent years. New findings on the genetics and biology of AMF also give us a new picture of how these fungi exist in ecosystems. In this article, I bring together some recent findings that indicate that AMF have evolved to contain multiple genomes, that they connect plants together by a hyphal network, and that these different genomes may potentially move around in this network. These findings show the need for more intensive studies on AMF population biology and genetics in order to understand how they have evolved with plants, to better understand their ecological role, and for applying AMF in environmental management programs and in agriculture. A number of key features of AMF population biology have been identified for future studies and most of these concern the need to understand drift, selection, and genetic exchange in multigenomic organisms, a task that has not previously presented itself to evolutionary biologists.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract Arbuscular Mycorhizal Fungi (AMF) are important plant symbionts that can improve floristic diversity and ecosystem productivity. These important fungi are obligate biotrophs and form symbioses with roots of the majority of plant species, improving plant nutrient acquisition in exchange of photosynthates. AM fungi are successful both ecologically as they occupy a very large spectrum of environments as well as host range and evolutionarily, as this symbiosis is over 400 million years old. These fungi grow and reproduce clonally by hyphae and multinucleate spores. AMF are coenocytic and recent work has shown that they harbor genetically different nuclei and that AMF populations are genetically diverse. How AMF species diversity is maintained has been addressed theoretically and experimentally at the community level. Much less attention has been drawn to understand how genetic diversity is maintained within populations although closely related individuals are more likely to compete for the same resources and occupy similar niches. How infra-individual genetic diversity is shaped and maintained has received even less attention. In Chapter 2, we show that individuals from a field population may differ in their symbiotic efficiency under reduced phosphate availability: We show there is genetic variation in an AMF field population for fitness-related growth traits in response to different phosphate availability acid host species. Furthermore, AFLP fingerprints of the same individuals growing in contrasting environments diverged suggesting that the composition in nuclei of AMF is dynamical and affected by environmental factors. Thus environmental heterogeneity is likely to play an important role for the maintenance of genetic diversity at the population level. In Chapter 3 we show that single spores do not inherit necessarily the same genetic material. We have found genetic divergences using two different types of molecular marker, as well as phenotypic divergences among single spore lines. Our results stress the importance of considering these organisms as a multilevel hierarchical system and of better knowing their life cycle. They have important consequences for the understanding of AMF genetics, ecology and the development of commercial AMF inocculum. Résumé Les champignons endomycorhiziens arbusculaires (CEA) sont d'importants symbiontes pour les plantes, car ils augmentent la diversité et la productivité des écosystèmes. Ces importants symbiontes sont des biotrophes obligatoires et forment une symbiose avec la plupart des plantes terrestres. Ils améliorent l'acquisition de substances nutritives de leurs hôtes en échange de sucres obtenus par photosynthèse. Ces champignons ont un grand succès écologique, ils colonisent une grande rangée d'environnements ainsi que d'hôtes. Ils ont aussi un succès évolutif certain de part le fait que cette symbiose existe depuis plus de 400 millions d'années. Les CEA sont asexués et croissent clonalement en formant des hyphes et des spores multinuclées. Les CEA sont des coenocytes et des travaux de recherche récents ont montré qu'ils possèdent des noyaux génétiquement différents. D'autres travaux ont aussi révélé que les populations de CEA sont génétiquement diversifiées. Comment la diversité des CEA est maintenue a seulement été adressée par des études théoriques et expérimentalement au niveau des communautés. Très peu d'attention a été portée sur le maintien de la diversité génétique infra et inter populationnelle, or ce sont les individus les plus proches génétiquement qui vont entrer en compétition pour des ressources et niches similaires. La formation et le maintien de la diversité intra-individu des CEA a reçu très peu d'attention. Dans le chapitre 2, nous montrons que des individus CEA d'un même champ différent dans leur efficacité symbiotique lorsque la concentration en phosphoré est réduite. Nous montrons qu'il existe de la variance génétique dans une population de CEA provenant d'un même champ en réponse à différentes concentrations de phosphore, ainsi qu'en réponse à différentes espèces d'hôtes, et ceci pour des traits de croissance vraisemblablement liés au succès reproducteur. De plus grâce à des AFLP nous avons pu montrer que le génome de ces individus subissent des changements lorsqu'ils croissent dans des environnements contrastés. Ceci suggère que les noyaux génétiquement différents des CEA sont des entités dynamiques. Il est fort probable que l'hétérogénéité environnementale joue un rôle dans le maintien de la diversité génétique des populations de CEA. Dans le chapitre 3, nous montrons que toutes les spores d'un même mycélium parental de CEA ne reçoivent pas exactement le même contenu génétique. Nous avons mis en évidence des divergences entre des Lignées monosporales en utilisant deux types de marqueur moléculaires, ainsi que des différences phénotypiques. Nos résutats soulignent l'importance de considézer ces organismes comme dés systëmes hiérarchiques mufti-niveaux, ainsi que de mieux connaître leur cycle de vie. Nos résultats ont d'importantes conséquences pour la compréhension du système génétique des CEA, ainsi que de leur évolution, leur écológie, mais également des conséquences pour la production d' inoccultim commercial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the ecologically important arbuscular mycorrhizal fungi (AMF), Sod1 encodes a functional polypeptide that confers increased tolerance to oxidative stress and that is upregulated inside the roots during early steps of the symbiosis with host plants. It is still unclear whether its expression is directed at scavenging reactive oxygen species (ROS) produced by the host, if it plays a role in the fungus-host dialogue, or if it is a consequence of oxidative stress from the surrounding environment. All these possibilities are equally likely, and molecular variation at the Sod1 locus can possibly have adaptive implications for one or all of the three mentioned functions. In this paper, we analyzed the diversity of the Sod1 gene in six AMF species, as well as 14 Glomus intraradices isolates from a single natural population. By sequencing this locus, we identified a large amount of nucleotide and amino acid molecular diversity both among AMF species and individuals, suggesting a rapid divergence of its codons. The Sod1 gene was monomorphic within each isolate we analyzed, and quantitative PCR strongly suggest this locus is present as a single copy in G. intraradices. Maximum-likelihood analyses performed using a variety of models for codon evolution indicated that a number of amino acid sites most likely evolved under the regime of positive selection among AMF species. In addition, we found that some isolates of G. intraradices from a natural population harbor very divergent orthologous Sod1 sequences, and our analysis suggested that diversifying selection, rather than recombination, was responsible for the persistence of this molecular diversity within the AMF population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inhalation of fungal particles is a ubiquitous way of exposure to microorganisms during human life; however, this exposure may promote or exacerbate respiratory diseases only in particular exposure conditions and human genetic background. Depending on the fungal species and form, fungal particles can induce symptoms in the lung by acting as irritants, aeroallergens or pathogens causing infection. Some thermophilic species can even act in all these three ways (e.g. Aspergillus, Penicillium), mesophilic species being only involved in allergic and/or non-allergic airway diseases (e.g. Cladosporium, Alternaria, Fusarium). The goal of the present review is to present the current knowledge on the interaction between airborne fungal particles and the host immune system, to illustrate the differences of immune sensing of different fungal species and to emphasise the importance of conducting research on non-conventional mesophilic fungal species. Indeed, the diversity of fungal species we inhale and the complexity of their composition have a direct impact on fungal particle recognition and immune system decision to tolerate or respond to those particles, eventually leading to collateral damages promoting airway pathologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Parasites have to survive in their vertebrate host during a sufficiently prolonged period of time to achieve their life cycle through successful transmission via insect vectors. In their vertebrate hosts, parasites are often confronted by vigorous effector immune responses that they have to subvert somehow to be able to outlast and be successfully transmitted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study aimed to evaluate the impact of genetically modified (GM) wheat with introduced pm3b mildew resistance transgene, on two types of root-colonizing microorganisms, namely pseudomonads and arbuscular mycorrhizal fungi (AMF). Our investigations were carried out in field trials over three field seasons and at two locations. Serial dilution in selective King's B medium and microscopy were used to assess the abundance of cultivable pseudomonads and AMF, respectively. We developed a denaturing gradient gel electrophoresis (DGGE) method to characterize the diversity of the pqqC gene, which is involved in Pseudomonas phosphate solubilization. A major result was that in the first field season Pseudomonas abundances and diversity on roots of GM pm3b lines, but also on non-GM sister lines were different from those of the parental lines and conventional wheat cultivars. This indicates a strong effect of the procedures by which these plants were created, as GM and sister lines were generated via tissue cultures and propagated in the greenhouse. Moreover, Pseudomonas population sizes and DGGE profiles varied considerably between individual GM lines with different genomic locations of the pm3b transgene. At individual time points, differences in Pseudomonas and AMF accumulation between GM and control lines were detected, but they were not consistent and much less pronounced than differences detected between young and old plants, different conventional wheat cultivars or at different locations and field seasons. Thus, we conclude that impacts of GM wheat on plant-beneficial root-colonizing microorganisms are minor and not of ecological importance. The cultivation-independent pqqC-DGGE approach proved to be a useful tool for monitoring the dynamics of Pseudomonas populations in a wheat field and even sensitive enough for detecting population responses to altered plant physiology.