131 resultados para Parametric Inverse Modelling.
Resumo:
The α(1b)-adrenergic receptor (AR) was, after rhodopsin, the first G protein-coupled receptor (GPCR) in which point mutations were shown to trigger constitutive (agonist-independent) activity. Constitutively activating mutations have been found in other AR subtypes as well as in several GPCRs. This chapter briefly summarizes the main findings on constitutively active mutants of the α(1a)- and α(1b)-AR subtypes and the methods used to predict activating mutations, to measure constitutive activity of Gq-coupled receptors and to investigate inverse agonism. In addition, it highlights the implications of studies on constitutively active AR mutants on elucidating the molecular mechanisms of receptor activation and drug action.
Resumo:
Rapid response to: Ortegón M, Lim S, Chisholm D, Mendis S. Cost effectiveness of strategies to combat cardiovascular disease, diabetes, and tobacco use in sub-Saharan Africa and South East Asia: mathematical modelling study. BMJ. 2012 Mar 2;344:e607. doi: 10.1136/bmj.e607. PMID: 22389337.
Resumo:
The paper presents an approach for mapping of precipitation data. The main goal is to perform spatial predictions and simulations of precipitation fields using geostatistical methods (ordinary kriging, kriging with external drift) as well as machine learning algorithms (neural networks). More practically, the objective is to reproduce simultaneously both the spatial patterns and the extreme values. This objective is best reached by models integrating geostatistics and machine learning algorithms. To demonstrate how such models work, two case studies have been considered: first, a 2-day accumulation of heavy precipitation and second, a 6-day accumulation of extreme orographic precipitation. The first example is used to compare the performance of two optimization algorithms (conjugate gradients and Levenberg-Marquardt) of a neural network for the reproduction of extreme values. Hybrid models, which combine geostatistical and machine learning algorithms, are also treated in this context. The second dataset is used to analyze the contribution of radar Doppler imagery when used as external drift or as input in the models (kriging with external drift and neural networks). Model assessment is carried out by comparing independent validation errors as well as analyzing data patterns.
Resumo:
Protecting native biodiversity against alien invasive species requires powerful methods to anticipate these invasions and to protect native species assumed to be at risk. Here, we describe how species distribution models (SDMs) can be used to identify areas predicted as suitable for rare native species and also predicted as highly susceptible to invasion by alien species, at present and under future climate and land-use scenarios. To assess the condition and dynamics of such conflicts, we developed a combined predictive modelling (CPM) approach, which predicts species distributions by combining two SDMs fitted using subsets of predictors classified as acting at either regional or local scales. We illustrate the CPM approach for an alien invader and a rare species associated to similar habitats in northwest Portugal. Combined models predict a wider variety of potential species responses, providing more informative projections of species distributions and future dynamics than traditional, non-combined models. They also provide more informative insight regarding current and future rare-invasive conflict areas. For our studied species, conflict areas of highest conservation relevance are predicted to decrease over the next decade, supporting previous reports that some invasive species may contract their geographic range and impact due to climate change. More generally, our results highlight the more informative character of the combined approach to address practical issues in conservation and management programs, especially those aimed at mitigating the impact of invasive plants, land-use and climate changes in sensitive regions
Resumo:
Altitudinal tree lines are mainly constrained by temperature, but can also be influenced by factors such as human activity, particularly in the European Alps, where centuries of agricultural use have affected the tree-line. Over the last decades this trend has been reversed due to changing agricultural practices and land-abandonment. We aimed to combine a statistical land-abandonment model with a forest dynamics model, to take into account the combined effects of climate and human land-use on the Alpine tree-line in Switzerland. Land-abandonment probability was expressed by a logistic regression function of degree-day sum, distance from forest edge, soil stoniness, slope, proportion of employees in the secondary and tertiary sectors, proportion of commuters and proportion of full-time farms. This was implemented in the TreeMig spatio-temporal forest model. Distance from forest edge and degree-day sum vary through feed-back from the dynamics part of TreeMig and climate change scenarios, while the other variables remain constant for each grid cell over time. The new model, TreeMig-LAb, was tested on theoretical landscapes, where the variables in the land-abandonment model were varied one by one. This confirmed the strong influence of distance from forest and slope on the abandonment probability. Degree-day sum has a more complex role, with opposite influences on land-abandonment and forest growth. TreeMig-LAb was also applied to a case study area in the Upper Engadine (Swiss Alps), along with a model where abandonment probability was a constant. Two scenarios were used: natural succession only (100% probability) and a probability of abandonment based on past transition proportions in that area (2.1% per decade). The former showed new forest growing in all but the highest-altitude locations. The latter was more realistic as to numbers of newly forested cells, but their location was random and the resulting landscape heterogeneous. Using the logistic regression model gave results consistent with observed patterns of land-abandonment: existing forests expanded and gaps closed, leading to an increasingly homogeneous landscape.
Resumo:
Reliable quantification of the macromolecule signals in short echo-time H-1 MRS spectra is particularly important at high magnetic fields for an accurate quantification of metabolite concentrations (the neurochemical profile) due to effectively increased spectral resolution of the macromolecule components. The purpose of the present study was to assess two approaches of quantification, which take the contribution of macromolecules into account in the quantification step. H-1 spectra were acquired on a 14.1 T/26 cm horizontal scanner on five rats using the ultra-short echo-time SPECIAL (spin echo full intensity acquired localization) spectroscopy sequence. Metabolite concentrations were estimated using LCModel, combined with a simulated basis set of metabolites using published spectral parameters and either the spectrum of macromolecules measured in vivo, using an inversion recovery technique, or baseline simulated by the built-in spline function. The fitted spline function resulted in a smooth approximation of the in vivo macromolecules, but in accordance with previous studies using Subtract-QUEST could not reproduce completely all features of the in vivo spectrum of macromolecules at 14.1 T. As a consequence, the measured macromolecular 'baseline' led to a more accurate and reliable quantification at higher field strengths.
Resumo:
In this paper, a phenomenologically motivated magneto-mechanically coupled finite strain elastic framework for simulating the curing process of polymers in the presence of a magnetic load is proposed. This approach is in line with previous works by Hossain and co-workers on finite strain curing modelling framework for the purely mechanical polymer curing (Hossain et al., 2009b). The proposed thermodynamically consistent approach is independent of any particular free energy function that may be used for the fully-cured magneto-sensitive polymer modelling, i.e. any phenomenological or micromechanical-inspired free energy can be inserted into the main modelling framework. For the fabrication of magneto-sensitive polymers, micron-size ferromagnetic particles are mixed with the liquid matrix material in the uncured stage. The particles align in a preferred direction with the application of a magnetic field during the curing process. The polymer curing process is a complex (visco) elastic process that transforms a fluid to a solid with time. Such transformation process is modelled by an appropriate constitutive relation which takes into account the temporal evolution of the material parameters appearing in a particular energy function. For demonstration in this work, a frequently used energy function is chosen, i.e. the classical Mooney-Rivlin free energy enhanced by coupling terms. Several representative numerical examples are demonstrated that prove the capability of our approach to correctly capture common features in polymers undergoing curing processes in the presence of a magneto-mechanical coupled load.
Resumo:
Debris flow hazard modelling at medium (regional) scale has been subject of various studies in recent years. In this study, hazard zonation was carried out, incorporating information about debris flow initiation probability (spatial and temporal), and the delimitation of the potential runout areas. Debris flow hazard zonation was carried out in the area of the Consortium of Mountain Municipalities of Valtellina di Tirano (Central Alps, Italy). The complexity of the phenomenon, the scale of the study, the variability of local conditioning factors, and the lacking data limited the use of process-based models for the runout zone delimitation. Firstly, a map of hazard initiation probabilities was prepared for the study area, based on the available susceptibility zoning information, and the analysis of two sets of aerial photographs for the temporal probability estimation. Afterwards, the hazard initiation map was used as one of the inputs for an empirical GIS-based model (Flow-R), developed at the University of Lausanne (Switzerland). An estimation of the debris flow magnitude was neglected as the main aim of the analysis was to prepare a debris flow hazard map at medium scale. A digital elevation model, with a 10 m resolution, was used together with landuse, geology and debris flow hazard initiation maps as inputs of the Flow-R model to restrict potential areas within each hazard initiation probability class to locations where debris flows are most likely to initiate. Afterwards, runout areas were calculated using multiple flow direction and energy based algorithms. Maximum probable runout zones were calibrated using documented past events and aerial photographs. Finally, two debris flow hazard maps were prepared. The first simply delimits five hazard zones, while the second incorporates the information about debris flow spreading direction probabilities, showing areas more likely to be affected by future debris flows. Limitations of the modelling arise mainly from the models applied and analysis scale, which are neglecting local controlling factors of debris flow hazard. The presented approach of debris flow hazard analysis, associating automatic detection of the source areas and a simple assessment of the debris flow spreading, provided results for consequent hazard and risk studies. However, for the validation and transferability of the parameters and results to other study areas, more testing is needed.
Resumo:
The paper describes how to integrate audience measurement and site visibility as the main research approaches in outdoor advertising research in a single concept. Details are portrayed on how GPS is used on a large scale in Switzerland for mobility analysis and audience measurement. Furthermore, the development of a software solution is introduced that allows the integration of all mobility data and poster location information. Finally a model and its results is presented for the calculation of coverage of individual poster campaigns and for the calculation of the number of contacts generated by each billboard.
Resumo:
Research has demonstrated that landscape or watershed scale processes can influence instream aquatic ecosystems, in terms of the impacts of delivery of fine sediment, solutes and organic matter. Testing such impacts upon populations of organisms (i.e. at the catchment scale) has not proven straightforward and differences have emerged in the conclusions reached. This is: (1) partly because different studies have focused upon different scales of enquiry; but also (2) because the emphasis upon upstream land cover has rarely addressed the extent to which such land covers are hydrologically connected, and hence able to deliver diffuse pollution, to the drainage network However, there is a third issue. In order to develop suitable hydrological models, we need to conceptualise the process cascade. To do this, we need to know what matters to the organism being impacted by the hydrological system, such that we can identify which processes need to be modelled. Acquiring such knowledge is not easy, especially for organisms like fish that might occupy very different locations in the river over relatively short periods of time. However, and inevitably, hydrological modellers have started by building up piecemeal the aspects of the problem that we think matter to fish. Herein, we report two developments: (a) for the case of sediment associated diffuse pollution from agriculture, a risk-based modelling framework, SCIMAP, has been developed, which is distinct because it has an explicit focus upon hydrological connectivity; and (b) we use spatially distributed ecological data to infer the processes and the associated process parameters that matter to salmonid fry. We apply the model to spatially distributed salmon and fry data from the River Eden, Cumbria, England. The analysis shows, quite surprisingly, that arable land covers are relatively unimportant as drivers of fry abundance. What matters most is intensive pasture, a land cover that could be associated with a number of stressors on salmonid fry (e.g. pesticides, fine sediment) and which allows us to identify a series of risky field locations, where this land cover is readily connected to the river system by overland flow. (C) 2010 Elsevier B.V. All rights reserved.