25 resultados para Parameter Estimation, Fokker-planck Equation, Finite Elements
Resumo:
Many three-dimensional (3-D) structures in rock, which formed during the deformation of the Earth's crust and lithosphere, are controlled by a difference in mechanical strength between rock units and are often the result of a geometrical instability. Such structures are, for example, folds, pinch-and-swell structures (due to necking) or cuspate-lobate structures (mullions). These struc-tures occur from the centimeter to the kilometer scale and the related deformation processes con-trol the formation of, for example, fold-and-thrust belts and extensional sedimentary basins or the deformation of the basement-cover interface. The 2-D deformation processes causing these structures are relatively well studied, however, several processes during large-strain 3-D defor-mation are still incompletely understood. One of these 3-D processes is the lateral propagation of these structures, such as fold and cusp propagation in a direction orthogonal to the shortening direction or neck propagation in direction orthogonal to the extension direction. Especially, we are interested in fold nappes which are recumbent folds with amplitudes usually exceeding 10 km and they have been presumably formed by ductile shearing. They often exhibit a constant sense of shearing and a non-linear increase of shear strain towards their overturned limb. The fold axes of the Morcles fold nappe in western Switzerland plunges to the ENE whereas the fold axes in the more eastern Doldenhorn nappe plunges to the WSW. These opposite plunge direc-tions characterize the Rawil depression (Wildstrubel depression). The Morcles nappe is mainly the result of layer parallel contraction and shearing. During the compression the massive lime-stones were more competent than the surrounding marls and shales, which led to the buckling characteristics of the Morcles nappe, especially in the north-dipping normal limb. The Dolden-horn nappe exhibits only a minor overturned fold limb. There are still no 3-D numerical studies which investigate the fundamental dynamics of the formation of the large-scale 3-D structure including the Morcles and Doldenhorn nappes and the related Rawil depression. We study the 3-D evolution of geometrical instabilities and fold nappe formation with numerical simulations based on the finite element method (FEM). Simulating geometrical instabilities caused by sharp variations of mechanical strength between rock units requires a numerical algorithm that can accurately resolve material interfaces for large differences in material properties (e.g. between limestone and shale) and for large deformations. Therefore, our FE algorithm combines a nu-merical contour-line technique and a deformable Lagrangian mesh with re-meshing. With this combined method it is possible to accurately follow the initial material contours with the FE mesh and to accurately resolve the geometrical instabilities. The algorithm can simulate 3-D de-formation for a visco-elastic rheology. The viscous rheology is described by a power-law flow law. The code is used to study the 3-D fold nappe formation, the lateral propagation of folding and also the lateral propagation of cusps due to initial half graben geometry. Thereby, the small initial geometrical perturbations for folding and necking are exactly followed by the FE mesh, whereas the initial large perturbation describing a half graben is defined by a contour line inter-secting the finite elements. Further, the 3-D algorithm is applied to 3-D viscous nacking during slab detachment. The results from various simulations are compared with 2-D resulats and a 1-D analytical solution. -- On retrouve beaucoup de structures en 3 dimensions (3-D) dans les roches qui ont pour origines une déformation de la lithosphère terrestre. Ces structures sont par exemple des plis, des boudins (pinch-and-swell) ou des mullions (cuspate-lobate) et sont présentés de l'échelle centimétrique à kilométrique. Mécaniquement, ces structures peuvent être expliquées par une différence de résistance entre les différentes unités de roches et sont généralement le fruit d'une instabilité géométrique. Ces différences mécaniques entre les unités contrôlent non seulement les types de structures rencontrées, mais également le type de déformation (thick skin, thin skin) et le style tectonique (bassin d'avant pays, chaîne d'avant pays). Les processus de la déformation en deux dimensions (2-D) formant ces structures sont relativement bien compris. Cependant, lorsque l'on ajoute la troisiéme dimension, plusieurs processus ne sont pas complètement compris lors de la déformation à large échelle. L'un de ces processus est la propagation latérale des structures, par exemple la propagation de plis ou de mullions dans la direction perpendiculaire à l'axe de com-pression, ou la propagation des zones d'amincissement des boudins perpendiculairement à la direction d'extension. Nous sommes particulièrement intéressés les nappes de plis qui sont des nappes de charriage en forme de plis couché d'une amplitude plurikilométrique et étant formées par cisaillement ductile. La plupart du temps, elles exposent un sens de cisaillement constant et une augmentation non linéaire de la déformation vers la base du flanc inverse. Un exemple connu de nappes de plis est le domaine Helvétique dans les Alpes de l'ouest. Une de ces nap-pes est la Nappe de Morcles dont l'axe de pli plonge E-NE tandis que de l'autre côté de la dépression du Rawil (ou dépression du Wildstrubel), la nappe du Doldenhorn (équivalent de la nappe de Morcles) possède un axe de pli plongeant O-SO. La forme particulière de ces nappes est due à l'alternance de couches calcaires mécaniquement résistantes et de couches mécanique-ment faibles constituées de schistes et de marnes. Ces différences mécaniques dans les couches permettent d'expliquer les plissements internes à la nappe, particulièrement dans le flanc inver-se de la nappe de Morcles. Il faut également noter que le développement du flanc inverse des nappes n'est pas le même des deux côtés de la dépression de Rawil. Ainsi la nappe de Morcles possède un important flanc inverse alors que la nappe du Doldenhorn en est presque dépour-vue. A l'heure actuelle, aucune étude numérique en 3-D n'a été menée afin de comprendre la dynamique fondamentale de la formation des nappes de Morcles et du Doldenhorn ainsi que la formation de la dépression de Rawil. Ce travail propose la première analyse de l'évolution 3-D des instabilités géométriques et de la formation des nappes de plis en utilisant des simulations numériques. Notre modèle est basé sur la méthode des éléments finis (FEM) qui permet de ré-soudre avec précision les interfaces entre deux matériaux ayant des propriétés mécaniques très différentes (par exemple entre les couches calcaires et les couches marneuses). De plus nous utilisons un maillage lagrangien déformable avec une fonction de re-meshing (production d'un nouveau maillage). Grâce à cette méthode combinée il nous est possible de suivre avec précisi-on les interfaces matérielles et de résoudre avec précision les instabilités géométriques lors de la déformation de matériaux visco-élastiques décrit par une rhéologie non linéaire (n>1). Nous uti-lisons cet algorithme afin de comprendre la formation des nappes de plis, la propagation latérale du plissement ainsi que la propagation latérale des structures de type mullions causé par une va-riation latérale de la géométrie (p.ex graben). De plus l'algorithme est utilisé pour comprendre la dynamique 3-D de l'amincissement visqueux et de la rupture de la plaque descendante en zone de subduction. Les résultats obtenus sont comparés à des modèles 2-D et à la solution analytique 1-D. -- Viele drei dimensionale (3-D) Strukturen, die in Gesteinen vorkommen und durch die Verfor-mung der Erdkruste und Litosphäre entstanden sind werden von den unterschiedlichen mechani-schen Eigenschaften der Gesteinseinheiten kontrolliert und sind häufig das Resulat von geome-trischen Istabilitäten. Zu diesen strukturen zählen zum Beispiel Falten, Pich-and-swell Struktu-ren oder sogenannte Cusbate-Lobate Strukturen (auch Mullions). Diese Strukturen kommen in verschiedenen Grössenordungen vor und können Masse von einigen Zentimeter bis zu einigen Kilometer aufweisen. Die mit der Entstehung dieser Strukturen verbundenen Prozesse kontrol-lieren die Entstehung von Gerbirgen und Sediment-Becken sowie die Verformung des Kontaktes zwischen Grundgebirge und Stedimenten. Die zwei dimensionalen (2-D) Verformungs-Prozesse die zu den genannten Strukturen führen sind bereits sehr gut untersucht. Einige Prozesse wäh-rend starker 3-D Verformung sind hingegen noch unvollständig verstanden. Einer dieser 3-D Prozesse ist die seitliche Fortpflanzung der beschriebenen Strukturen, so wie die seitliche Fort-pflanzung von Falten und Cusbate-Lobate Strukturen senkrecht zur Verkürzungsrichtung und die seitliche Fortpflanzung von Pinch-and-Swell Strukturen othogonal zur Streckungsrichtung. Insbesondere interessieren wir uns für Faltendecken, liegende Falten mit Amplituden von mehr als 10 km. Faltendecken entstehen vermutlich durch duktile Verscherung. Sie zeigen oft einen konstanten Scherungssinn und eine nicht-lineare zunahme der Scherverformung am überkipp-ten Schenkel. Die Faltenachsen der Morcles Decke in der Westschweiz fallen Richtung ONO während die Faltenachsen der östicher gelegenen Doldenhorn Decke gegen WSW einfallen. Diese entgegengesetzten Einfallrichtungen charakterisieren die Rawil Depression (Wildstrubel Depression). Die Morcles Decke ist überwiegend das Resultat von Verkürzung und Scherung parallel zu den Sedimentlagen. Während der Verkürzung verhielt sich der massive Kalkstein kompetenter als der Umliegende Mergel und Schiefer, was zur Verfaltetung Morcles Decke führ-te, vorallem in gegen Norden eifallenden überkippten Schenkel. Die Doldenhorn Decke weist dagegen einen viel kleineren überkippten Schenkel und eine stärkere Lokalisierung der Verfor-mung auf. Bis heute gibt es keine 3-D numerischen Studien, die die fundamentale Dynamik der Entstehung von grossen stark verformten 3-D Strukturen wie den Morcles und Doldenhorn Decken sowie der damit verbudenen Rawil Depression untersuchen. Wir betrachten die 3-D Ent-wicklung von geometrischen Instabilitäten sowie die Entstehung fon Faltendecken mit Hilfe von numerischen Simulationen basiert auf der Finite Elemente Methode (FEM). Die Simulation von geometrischen Instabilitäten, die aufgrund von Änderungen der Materialeigenschaften zwischen verschiedenen Gesteinseinheiten entstehen, erfortert einen numerischen Algorithmus, der in der Lage ist die Materialgrenzen mit starkem Kontrast der Materialeigenschaften (zum Beispiel zwi-schen Kalksteineinheiten und Mergel) für starke Verfomung genau aufzulösen. Um dem gerecht zu werden kombiniert unser FE Algorithmus eine numerische Contour-Linien-Technik und ein deformierbares Lagranges Netz mit Re-meshing. Mit dieser kombinierten Methode ist es mög-lich den anfänglichen Materialgrenzen mit dem FE Netz genau zu folgen und die geometrischen Instabilitäten genügend aufzulösen. Der Algorithmus ist in der Lage visko-elastische 3-D Ver-formung zu rechnen, wobei die viskose Rheologie mit Hilfe eines power-law Fliessgesetzes beschrieben wird. Mit dem numerischen Algorithmus untersuchen wir die Entstehung von 3-D Faltendecken, die seitliche Fortpflanzung der Faltung sowie der Cusbate-Lobate Strukturen die sich durch die Verkürzung eines mit Sediment gefüllten Halbgraben bilden. Dabei werden die anfänglichen geometrischen Instabilitäten der Faltung exakt mit dem FE Netz aufgelöst wäh-rend die Materialgranzen des Halbgrabens die Finiten Elemente durchschneidet. Desweiteren wird der 3-D Algorithmus auf die Einschnürung während der 3-D viskosen Plattenablösung und Subduktion angewandt. Die 3-D Resultate werden mit 2-D Ergebnissen und einer 1-D analyti-schen Lösung verglichen.
Resumo:
Scientific curiosity, exploration of georesources and environmental concerns are pushing the geoscientific research community toward subsurface investigations of ever-increasing complexity. This review explores various approaches to formulate and solve inverse problems in ways that effectively integrate geological concepts with geophysical and hydrogeological data. Modern geostatistical simulation algorithms can produce multiple subsurface realizations that are in agreement with conceptual geological models and statistical rock physics can be used to map these realizations into physical properties that are sensed by the geophysical or hydrogeological data. The inverse problem consists of finding one or an ensemble of such subsurface realizations that are in agreement with the data. The most general inversion frameworks are presently often computationally intractable when applied to large-scale problems and it is necessary to better understand the implications of simplifying (1) the conceptual geological model (e.g., using model compression); (2) the physical forward problem (e.g., using proxy models); and (3) the algorithm used to solve the inverse problem (e.g., Markov chain Monte Carlo or local optimization methods) to reach practical and robust solutions given today's computer resources and knowledge. We also highlight the need to not only use geophysical and hydrogeological data for parameter estimation purposes, but also to use them to falsify or corroborate alternative geological scenarios.
Resumo:
Preface The starting point for this work and eventually the subject of the whole thesis was the question: how to estimate parameters of the affine stochastic volatility jump-diffusion models. These models are very important for contingent claim pricing. Their major advantage, availability T of analytical solutions for characteristic functions, made them the models of choice for many theoretical constructions and practical applications. At the same time, estimation of parameters of stochastic volatility jump-diffusion models is not a straightforward task. The problem is coming from the variance process, which is non-observable. There are several estimation methodologies that deal with estimation problems of latent variables. One appeared to be particularly interesting. It proposes the estimator that in contrast to the other methods requires neither discretization nor simulation of the process: the Continuous Empirical Characteristic function estimator (EGF) based on the unconditional characteristic function. However, the procedure was derived only for the stochastic volatility models without jumps. Thus, it has become the subject of my research. This thesis consists of three parts. Each one is written as independent and self contained article. At the same time, questions that are answered by the second and third parts of this Work arise naturally from the issues investigated and results obtained in the first one. The first chapter is the theoretical foundation of the thesis. It proposes an estimation procedure for the stochastic volatility models with jumps both in the asset price and variance processes. The estimation procedure is based on the joint unconditional characteristic function for the stochastic process. The major analytical result of this part as well as of the whole thesis is the closed form expression for the joint unconditional characteristic function for the stochastic volatility jump-diffusion models. The empirical part of the chapter suggests that besides a stochastic volatility, jumps both in the mean and the volatility equation are relevant for modelling returns of the S&P500 index, which has been chosen as a general representative of the stock asset class. Hence, the next question is: what jump process to use to model returns of the S&P500. The decision about the jump process in the framework of the affine jump- diffusion models boils down to defining the intensity of the compound Poisson process, a constant or some function of state variables, and to choosing the distribution of the jump size. While the jump in the variance process is usually assumed to be exponential, there are at least three distributions of the jump size which are currently used for the asset log-prices: normal, exponential and double exponential. The second part of this thesis shows that normal jumps in the asset log-returns should be used if we are to model S&P500 index by a stochastic volatility jump-diffusion model. This is a surprising result. Exponential distribution has fatter tails and for this reason either exponential or double exponential jump size was expected to provide the best it of the stochastic volatility jump-diffusion models to the data. The idea of testing the efficiency of the Continuous ECF estimator on the simulated data has already appeared when the first estimation results of the first chapter were obtained. In the absence of a benchmark or any ground for comparison it is unreasonable to be sure that our parameter estimates and the true parameters of the models coincide. The conclusion of the second chapter provides one more reason to do that kind of test. Thus, the third part of this thesis concentrates on the estimation of parameters of stochastic volatility jump- diffusion models on the basis of the asset price time-series simulated from various "true" parameter sets. The goal is to show that the Continuous ECF estimator based on the joint unconditional characteristic function is capable of finding the true parameters. And, the third chapter proves that our estimator indeed has the ability to do so. Once it is clear that the Continuous ECF estimator based on the unconditional characteristic function is working, the next question does not wait to appear. The question is whether the computation effort can be reduced without affecting the efficiency of the estimator, or whether the efficiency of the estimator can be improved without dramatically increasing the computational burden. The efficiency of the Continuous ECF estimator depends on the number of dimensions of the joint unconditional characteristic function which is used for its construction. Theoretically, the more dimensions there are, the more efficient is the estimation procedure. In practice, however, this relationship is not so straightforward due to the increasing computational difficulties. The second chapter, for example, in addition to the choice of the jump process, discusses the possibility of using the marginal, i.e. one-dimensional, unconditional characteristic function in the estimation instead of the joint, bi-dimensional, unconditional characteristic function. As result, the preference for one or the other depends on the model to be estimated. Thus, the computational effort can be reduced in some cases without affecting the efficiency of the estimator. The improvement of the estimator s efficiency by increasing its dimensionality faces more difficulties. The third chapter of this thesis, in addition to what was discussed above, compares the performance of the estimators with bi- and three-dimensional unconditional characteristic functions on the simulated data. It shows that the theoretical efficiency of the Continuous ECF estimator based on the three-dimensional unconditional characteristic function is not attainable in practice, at least for the moment, due to the limitations on the computer power and optimization toolboxes available to the general public. Thus, the Continuous ECF estimator based on the joint, bi-dimensional, unconditional characteristic function has all the reasons to exist and to be used for the estimation of parameters of the stochastic volatility jump-diffusion models.
Resumo:
Lutetium zoning in garnet within eclogites from the Zermatt-Saas Fee zone, Western Alps, reveal sharp, exponentially decreasing central peaks. They can be used to constrain maximum Lu volume diffusion in garnets. A prograde garnet growth temperature interval of 450-600 A degrees C has been estimated based on pseudosection calculations and garnet-clinopyroxene thermometry. The maximum pre-exponential diffusion coefficient which fits the measured central peak is in the order of D-0= 5.7*10(-6) m(2)/s, taking an estimated activation energy of 270 kJ/mol based on diffusion experiments for other rare earth elements in garnet. This corresponds to a maximum diffusion rate of D (600 A degrees C) = 4.0*10(-22) m(2)/s. The diffusion estimate of Lu can be used to estimate the minimum closure temperature, T-c, for Sm-Nd and Lu-Hf age data that have been obtained in eclogites of the Western Alps, postulating, based on a literature review, that D (Hf) < D (Nd) < D (Sm) a parts per thousand currency sign D (Lu). T-c calculations, using the Dodson equation, yielded minimum closure temperatures of about 630 A degrees C, assuming a rapid initial exhumation rate of 50A degrees/m.y., and an average crystal size of garnets (r = 1 mm). This suggests that Sm/Nd and Lu/Hf isochron age differences in eclogites from the Western Alps, where peak temperatures did rarely exceed 600 A degrees C must be interpreted in terms of prograde metamorphism.
Resumo:
Empirical literature on the analysis of the efficiency of measures for reducing persistent government deficits has mainly focused on the direct explanation of deficit. By contrast, this paper aims at modeling government revenue and expenditure within a simultaneous framework and deriving the fiscal balance (surplus or deficit) equation as the difference between the two variables. This setting enables one to not only judge how relevant the explanatory variables are in explaining the fiscal balance but also understand their impact on revenue and/or expenditure. Our empirical results, obtained by using a panel data set on Swiss Cantons for the period 1980-2002, confirm the relevance of the approach followed here, by providing unambiguous evidence of a simultaneous relationship between revenue and expenditure. They also reveal strong dynamic components in revenue, expenditure, and fiscal balance. Among the significant determinants of public fiscal balance we not only find the usual business cycle elements, but also and more importantly institutional factors such as the number of administrative units, and the ease with which people can resort to political (direct democracy) instruments, such as public initiatives and referendum.
Resumo:
Over the past decade, significant interest has been expressed in relating the spatial statistics of surface-based reflection ground-penetrating radar (GPR) data to those of the imaged subsurface volume. A primary motivation for this work is that changes in the radar wave velocity, which largely control the character of the observed data, are expected to be related to corresponding changes in subsurface water content. Although previous work has indeed indicated that the spatial statistics of GPR images are linked to those of the water content distribution of the probed region, a viable method for quantitatively analyzing the GPR data and solving the corresponding inverse problem has not yet been presented. Here we address this issue by first deriving a relationship between the 2-D autocorrelation of a water content distribution and that of the corresponding GPR reflection image. We then show how a Bayesian inversion strategy based on Markov chain Monte Carlo sampling can be used to estimate the posterior distribution of subsurface correlation model parameters that are consistent with the GPR data. Our results indicate that if the underlying assumptions are valid and we possess adequate prior knowledge regarding the water content distribution, in particular its vertical variability, this methodology allows not only for the reliable recovery of lateral correlation model parameters but also for estimates of parameter uncertainties. In the case where prior knowledge regarding the vertical variability of water content is not available, the results show that the methodology still reliably recovers the aspect ratio of the heterogeneity.
Resumo:
SummaryDiscrete data arise in various research fields, typically when the observations are count data.I propose a robust and efficient parametric procedure for estimation of discrete distributions. The estimation is done in two phases. First, a very robust, but possibly inefficient, estimate of the model parameters is computed and used to indentify outliers. Then the outliers are either removed from the sample or given low weights, and a weighted maximum likelihood estimate (WML) is computed.The weights are determined via an adaptive process such that if the data follow the model, then asymptotically no observation is downweighted.I prove that the final estimator inherits the breakdown point of the initial one, and that its influence function at the model is the same as the influence function of the maximum likelihood estimator, which strongly suggests that it is asymptotically fully efficient.The initial estimator is a minimum disparity estimator (MDE). MDEs can be shown to have full asymptotic efficiency, and some MDEs have very high breakdown points and very low bias under contamination. Several initial estimators are considered, and the performances of the WMLs based on each of them are studied.It results that in a great variety of situations the WML substantially improves the initial estimator, both in terms of finite sample mean square error and in terms of bias under contamination. Besides, the performances of the WML are rather stable under a change of the MDE even if the MDEs have very different behaviors.Two examples of application of the WML to real data are considered. In both of them, the necessity for a robust estimator is clear: the maximum likelihood estimator is badly corrupted by the presence of a few outliers.This procedure is particularly natural in the discrete distribution setting, but could be extended to the continuous case, for which a possible procedure is sketched.RésuméLes données discrètes sont présentes dans différents domaines de recherche, en particulier lorsque les observations sont des comptages.Je propose une méthode paramétrique robuste et efficace pour l'estimation de distributions discrètes. L'estimation est faite en deux phases. Tout d'abord, un estimateur très robuste des paramètres du modèle est calculé, et utilisé pour la détection des données aberrantes (outliers). Cet estimateur n'est pas nécessairement efficace. Ensuite, soit les outliers sont retirés de l'échantillon, soit des faibles poids leur sont attribués, et un estimateur du maximum de vraisemblance pondéré (WML) est calculé.Les poids sont déterminés via un processus adaptif, tel qu'asymptotiquement, si les données suivent le modèle, aucune observation n'est dépondérée.Je prouve que le point de rupture de l'estimateur final est au moins aussi élevé que celui de l'estimateur initial, et que sa fonction d'influence au modèle est la même que celle du maximum de vraisemblance, ce qui suggère que cet estimateur est pleinement efficace asymptotiquement.L'estimateur initial est un estimateur de disparité minimale (MDE). Les MDE sont asymptotiquement pleinement efficaces, et certains d'entre eux ont un point de rupture très élevé et un très faible biais sous contamination. J'étudie les performances du WML basé sur différents MDEs.Le résultat est que dans une grande variété de situations le WML améliore largement les performances de l'estimateur initial, autant en terme du carré moyen de l'erreur que du biais sous contamination. De plus, les performances du WML restent assez stables lorsqu'on change l'estimateur initial, même si les différents MDEs ont des comportements très différents.Je considère deux exemples d'application du WML à des données réelles, où la nécessité d'un estimateur robuste est manifeste : l'estimateur du maximum de vraisemblance est fortement corrompu par la présence de quelques outliers.La méthode proposée est particulièrement naturelle dans le cadre des distributions discrètes, mais pourrait être étendue au cas continu.
Resumo:
In the context of Systems Biology, computer simulations of gene regulatory networks provide a powerful tool to validate hypotheses and to explore possible system behaviors. Nevertheless, modeling a system poses some challenges of its own: especially the step of model calibration is often difficult due to insufficient data. For example when considering developmental systems, mostly qualitative data describing the developmental trajectory is available while common calibration techniques rely on high-resolution quantitative data. Focusing on the calibration of differential equation models for developmental systems, this study investigates different approaches to utilize the available data to overcome these difficulties. More specifically, the fact that developmental processes are hierarchically organized is exploited to increase convergence rates of the calibration process as well as to save computation time. Using a gene regulatory network model for stem cell homeostasis in Arabidopsis thaliana the performance of the different investigated approaches is evaluated, documenting considerable gains provided by the proposed hierarchical approach.
Resumo:
AbstractFor a wide range of environmental, hydrological, and engineering applications there is a fast growing need for high-resolution imaging. In this context, waveform tomographic imaging of crosshole georadar data is a powerful method able to provide images of pertinent electrical properties in near-surface environments with unprecedented spatial resolution. In contrast, conventional ray-based tomographic methods, which consider only a very limited part of the recorded signal (first-arrival traveltimes and maximum first-cycle amplitudes), suffer from inherent limitations in resolution and may prove to be inadequate in complex environments. For a typical crosshole georadar survey the potential improvement in resolution when using waveform-based approaches instead of ray-based approaches is in the range of one order-of- magnitude. Moreover, the spatial resolution of waveform-based inversions is comparable to that of common logging methods. While in exploration seismology waveform tomographic imaging has become well established over the past two decades, it is comparably still underdeveloped in the georadar domain despite corresponding needs. Recently, different groups have presented finite-difference time-domain waveform inversion schemes for crosshole georadar data, which are adaptations and extensions of Tarantola's seminal nonlinear generalized least-squares approach developed for the seismic case. First applications of these new crosshole georadar waveform inversion schemes on synthetic and field data have shown promising results. However, there is little known about the limits and performance of such schemes in complex environments. To this end, the general motivation of my thesis is the evaluation of the robustness and limitations of waveform inversion algorithms for crosshole georadar data in order to apply such schemes to a wide range of real world problems.One crucial issue to making applicable and effective any waveform scheme to real-world crosshole georadar problems is the accurate estimation of the source wavelet, which is unknown in reality. Waveform inversion schemes for crosshole georadar data require forward simulations of the wavefield in order to iteratively solve the inverse problem. Therefore, accurate knowledge of the source wavelet is critically important for successful application of such schemes. Relatively small differences in the estimated source wavelet shape can lead to large differences in the resulting tomograms. In the first part of my thesis, I explore the viability and robustness of a relatively simple iterative deconvolution technique that incorporates the estimation of the source wavelet into the waveform inversion procedure rather than adding additional model parameters into the inversion problem. Extensive tests indicate that this source wavelet estimation technique is simple yet effective, and is able to provide remarkably accurate and robust estimates of the source wavelet in the presence of strong heterogeneity in both the dielectric permittivity and electrical conductivity as well as significant ambient noise in the recorded data. Furthermore, our tests also indicate that the approach is insensitive to the phase characteristics of the starting wavelet, which is not the case when directly incorporating the wavelet estimation into the inverse problem.Another critical issue with crosshole georadar waveform inversion schemes which clearly needs to be investigated is the consequence of the common assumption of frequency- independent electromagnetic constitutive parameters. This is crucial since in reality, these parameters are known to be frequency-dependent and complex and thus recorded georadar data may show significant dispersive behaviour. In particular, in the presence of water, there is a wide body of evidence showing that the dielectric permittivity can be significantly frequency dependent over the GPR frequency range, due to a variety of relaxation processes. The second part of my thesis is therefore dedicated to the evaluation of the reconstruction limits of a non-dispersive crosshole georadar waveform inversion scheme in the presence of varying degrees of dielectric dispersion. I show that the inversion algorithm, combined with the iterative deconvolution-based source wavelet estimation procedure that is partially able to account for the frequency-dependent effects through an "effective" wavelet, performs remarkably well in weakly to moderately dispersive environments and has the ability to provide adequate tomographic reconstructions.
Resumo:
Prevention of acid mine drainage (AMD) in sulfide-containing tailings requires the identification of the geochemical processes and element pathways in the early stages of tailing deposition. However, analyses of recently deposited tailings in active tailings impoundments are scarce because mineralogical changes occur near the detection limits of many assays. This study shows that a detailed geochemical study which includes stable isotopes of water (delta H-2, delta O-18), dissolved sulfates (delta S-34, delta O-18) and hydrochernical parameter (pH, Eh, DOC, major and trace elements) from tailings samples taken at different depths in rainy and dry seasons allows the understanding of weathering (oxidation, dissolution, sorption, and desorption), water and element pathways, and mixing processes in active tailings impoundments. Fresh alkaline tailings (pH 9.2-10.2) from the Cu-Mo porphyry deposit in El Teniente, Chile had low carbonate (0.8-1.1 Wt-% CaCO3 equivalent) and sulfide concentrations (0.8-1.3 wt.%, mainly as pyrite). In the alkaline tailings water, Mo and Cu (up to 3.9 mg/L Mo and 0.016 mg/L Cu) were mobile as MoO42- and Cu (OH)(2)(0). During the flotation, tailings water reached equilibrium with gypsum (up to 738 mg/L Ca and 1765 mg/ L SO4). The delta S-34 VS. delta O-18 covariations of dissolved sulfate (2.3 to 4.5% delta S-34 and 4.1 to 6.0 % delta O-18) revealed the sulfate sources: the dissolution of primary sulfates (12.0 to 13.2%. delta S-34, 7.4 to 10.9%.delta O-18) and oxidation of primary sulfides (-6.7 to 1.7%. delta S-34). Sedimented tailings in the tailings impoundment can be divided into three layers with different water sources, element pathways, and geochemical processes. The deeper sediments (> 1 m depth) were infiltrated by catchment water, which partly replaced the original tailings water, especially during the winter season. This may have resulted in the change from alkaline to near-neutral pH and towards lower concentrations of most dissolved elements. The neutral pH and high DOC (up to 99.4 mg/L C) of the catchment water mobilized Cu (up to 0.25 mg/L) due to formation of organic Cu complexes; and Zn (up to 130 mg/L) due to dissolution of Zn oxides and desorption). At I m depth, tailings pore water obtained during the winter season was chemically and isotopically similar to fresh tailings water (pH 9.8-10.6, 26.7-35.5 mg/L Cl, 2.3-6.0 mg/L Mo). During the summer, a vadose zone evolved locally and temporarily up to 1.2 m depth. resulting in a higher concentration of dissolved solids in the pore water due to evaporation. During periodical new deposition of fresh tailings, the geochemistry of the surface layer was geochemically similar to fresh tailings. In periods without deposition, sulfide oxidation was suggested by decreasing pH (7.7-9.5), enrichment of MoO42- and SO42-, and changes in the isotopic composition of dissolved sulfates. Further enrichment for Na, K, Cl, SO4, Mg, Cu, and Mo (up to 23.8 mg/L Mo) resulted from capillary transport towards the surface followed by evaporation and the precipitation of highly soluble efflorescent salts (e.g., mirabilite, syngenite) at the tailing surface during summer. (C) 2008 Elsevier B.V. All rights reserved.