55 resultados para Parallel projection
Resumo:
PURPOSE: Most existing methods for accelerated parallel imaging in MRI require additional data, which are used to derive information about the sensitivity profile of each radiofrequency (RF) channel. In this work, a method is presented to avoid the acquisition of separate coil calibration data for accelerated Cartesian trajectories. METHODS: Quadratic phase is imparted to the image to spread the signals in k-space (aka phase scrambling). By rewriting the Fourier transform as a convolution operation, a window can be introduced to the convolved chirp function, allowing a low-resolution image to be reconstructed from phase-scrambled data without prominent aliasing. This image (for each RF channel) can be used to derive coil sensitivities to drive existing parallel imaging techniques. As a proof of concept, the quadratic phase was applied by introducing an offset to the x(2) - y(2) shim and the data were reconstructed using adapted versions of the image space-based sensitivity encoding and GeneRalized Autocalibrating Partially Parallel Acquisitions algorithms. RESULTS: The method is demonstrated in a phantom (1 × 2, 1 × 3, and 2 × 2 acceleration) and in vivo (2 × 2 acceleration) using a 3D gradient echo acquisition. CONCLUSION: Phase scrambling can be used to perform parallel imaging acceleration without acquisition of separate coil calibration data, demonstrated here for a 3D-Cartesian trajectory. Further research is required to prove the applicability to other 2D and 3D sampling schemes. Magn Reson Med, 2014. © 2014 Wiley Periodicals, Inc.
Resumo:
The use of self-calibrating techniques in parallel magnetic resonance imaging eliminates the need for coil sensitivity calibration scans and avoids potential mismatches between calibration scans and subsequent accelerated acquisitions (e.g., as a result of patient motion). Most examples of self-calibrating Cartesian parallel imaging techniques have required the use of modified k-space trajectories that are densely sampled at the center and more sparsely sampled in the periphery. However, spiral and radial trajectories offer inherent self-calibrating characteristics because of their densely sampled center. At no additional cost in acquisition time and with no modification in scanning protocols, in vivo coil sensitivity maps may be extracted from the densely sampled central region of k-space. This work demonstrates the feasibility of self-calibrated spiral and radial parallel imaging using a previously described iterative non-Cartesian sensitivity encoding algorithm.
Resumo:
The human primary auditory cortex (AI) is surrounded by several other auditory areas, which can be identified by cyto-, myelo- and chemoarchitectonic criteria. We report here on the pattern of calcium-binding protein immunoreactivity within these areas. The supratemporal regions of four normal human brains (eight hemispheres) were processed histologically, and serial sections were stained for parvalbumin, calretinin or calbindin. Each calcium-binding protein yielded a specific pattern of labelling, which differed between auditory areas. In AI, defined as area TC [see C. von Economo and L. Horn (1930) Z. Ges. Neurol. Psychiatr.,130, 678-757], parvalbumin labelling was dark in layer IV; several parvalbumin-positive multipolar neurons were distributed in layers III and IV. Calbindin yielded dark labelling in layers I-III and V; it revealed numerous multipolar and pyramidal neurons in layers II and III. Calretinin labelling was lighter than that of parvalbumin or calbindin in AI; calretinin-positive bipolar and bitufted neurons were present in supragranular layers. In non-primary auditory areas, the intensity of labelling tended to become progressively lighter while moving away from AI, with qualitative differences between the cytoarchitectonically defined areas. In analogy to non-human primates, our results suggest differences in intrinsic organization between auditory areas that are compatible with parallel and hierarchical processing of auditory information.
Resumo:
This study examines syntactic and morphological aspects of the production and comprehension of pronouns by 99 typically developing French-speaking children aged 3 years, 5 months to 6 years, 5 months. A fine structural analysis of subject, object, and reflexive clitics suggests that whereas the object clitic chain crosses the subject chain, the reflexive clitic chain is nested within it. We argue that this structural difference introduces differences in processing complexity, chain crossing being more complex than nesting. In support of this analysis, both production and comprehension experiments show that children have more difficulty with object than with reflexive clitics (with more omissions in production and more erroneous judgments in sentences involving Principle B in comprehension). Concerning the morphological aspect, French subject and object pronouns agree in gender with their referent. We report serious difficulties with pronoun gender both in production and comprehension in children around the age of 4 (with nearly 30% errors in production and chance level judgments in comprehension), which tend to disappear by age 6. The distribution of errors further suggests that the masculine gender is processed as the default value. These findings provide further insights into the relationship between comprehension and production in the acquisition process.
Resumo:
This contribution builds upon a former paper by the authors (Lipps and Betz 2004), in which a stochastic population projection for East- and West Germany is performed. Aim was to forecast relevant population parameters and their distribution in a consistent way. We now present some modifications, which have been modelled since. First, population parameters for the entire German population are modelled. In order to overcome the modelling problem of the structural break in the East during reunification, we show that the adaptation process of the relevant figures by the East can be considered to be completed by now. As a consequence, German parameters can be modelled just by using the West German historic patterns, with the start-off population of entire Germany. Second, a new model to simulate age specific fertility rates is presented, based on a quadratic spline approach. This offers a higher flexibility to model various age specific fertility curves. The simulation results are compared with the scenario based official forecasts for Germany in 2050. Exemplary for some population parameters (e.g. dependency ratio), it can be shown that the range spanned by the medium and extreme variants correspond to the s-intervals in the stochastic framework. It seems therefore more appropriate to treat this range as a s-interval covering about two thirds of the true distribution.
Resumo:
PURPOSE: To determine the lower limit of dose reduction with hybrid and fully iterative reconstruction algorithms in detection of endoleaks and in-stent thrombus of thoracic aorta with computed tomographic (CT) angiography by applying protocols with different tube energies and automated tube current modulation. MATERIALS AND METHODS: The calcification insert of an anthropomorphic cardiac phantom was replaced with an aortic aneurysm model containing a stent, simulated endoleaks, and an intraluminal thrombus. CT was performed at tube energies of 120, 100, and 80 kVp with incrementally increasing noise indexes (NIs) of 16, 25, 34, 43, 52, 61, and 70 and a 2.5-mm section thickness. NI directly controls radiation exposure; a higher NI allows for greater image noise and decreases radiation. Images were reconstructed with filtered back projection (FBP) and hybrid and fully iterative algorithms. Five radiologists independently analyzed lesion conspicuity to assess sensitivity and specificity. Mean attenuation (in Hounsfield units) and standard deviation were measured in the aorta to calculate signal-to-noise ratio (SNR). Attenuation and SNR of different protocols and algorithms were analyzed with analysis of variance or Welch test depending on data distribution. RESULTS: Both sensitivity and specificity were 100% for simulated lesions on images with 2.5-mm section thickness and an NI of 25 (3.45 mGy), 34 (1.83 mGy), or 43 (1.16 mGy) at 120 kVp; an NI of 34 (1.98 mGy), 43 (1.23 mGy), or 61 (0.61 mGy) at 100 kVp; and an NI of 43 (1.46 mGy) or 70 (0.54 mGy) at 80 kVp. SNR values showed similar results. With the fully iterative algorithm, mean attenuation of the aorta decreased significantly in reduced-dose protocols in comparison with control protocols at 100 kVp (311 HU at 16 NI vs 290 HU at 70 NI, P ≤ .0011) and 80 kVp (400 HU at 16 NI vs 369 HU at 70 NI, P ≤ .0007). CONCLUSION: Endoleaks and in-stent thrombus of thoracic aorta were detectable to 1.46 mGy (80 kVp) with FBP, 1.23 mGy (100 kVp) with the hybrid algorithm, and 0.54 mGy (80 kVp) with the fully iterative algorithm.
Resumo:
The subdivisions of human inferior colliculus are currently based on Golgi and Nissl-stained preparations. We have investigated the distribution of calcium-binding protein immunoreactivity in the human inferior colliculus and found complementary or mutually exclusive localisations of parvalbumin versus calbindin D-28k and calretinin staining. The central nucleus of the inferior colliculus but not the surrounding regions contained parvalbumin-positive neuronal somata and fibres. Calbindin-positive neurons and fibres were concentrated in the dorsal aspect of the central nucleus and in structures surrounding it: the dorsal cortex, the lateral lemniscus, the ventrolateral nucleus, and the intercollicular region. In the dorsal cortex, labelling of calbindin and calretinin revealed four distinct layers.Thus, calcium-binding protein reactivity reveals in the human inferior colliculus distinct neuronal populations that are anatomically segregated. The different calcium-binding protein-defined subdivisions may belong to parallel auditory pathways that were previously demonstrated in non-human primates, and they may constitute a first indication of parallel processing in human subcortical auditory structures.
Resumo:
A cardiac-triggered free-breathing three-dimensional balanced fast field-echo projection magnetic resonance (MR) angiographic sequence with a two-dimensional pencil-beam aortic labeling pulse was developed for the renal arteries. For data acquisition during free breathing in eight healthy adults and seven consecutive patients with renal artery disease, real-time navigator technology was implemented. This technique allows high-spatial-resolution and high-contrast renal MR angiography and visualization of renal artery stenosis without exogenous contrast agent or breath hold. Initial promising results warrant larger clinical studies.
Resumo:
In this paper we present a new method to track bonemovements in stereoscopic X-ray image series of the kneejoint. The method is based on two different X-ray imagesets: a rotational series of acquisitions of the stillsubject knee that will allow the tomographicreconstruction of the three-dimensional volume (model),and a stereoscopic image series of orthogonal projectionsas the subject performs movements. Tracking the movementsof bones throughout the stereoscopic image series meansto determine, for each frame, the best pose of everymoving element (bone) previously identified in the 3Dreconstructed model. The quality of a pose is reflectedin the similarity between its simulated projections andthe actual radiographs. We use direct Fourierreconstruction to approximate the three-dimensionalvolume of the knee joint. Then, to avoid the expensivecomputation of digitally rendered radiographs (DRR) forpose recovery, we reformulate the tracking problem in theFourier domain. Under the hypothesis of parallel X-raybeams, we use the central-slice-projection theorem toreplace the heavy 2D-to-3D registration of projections inthe signal domain by efficient slice-to-volumeregistration in the Fourier domain. Focusing onrotational movements, the translation-relevant phaseinformation can be discarded and we only consider scalarFourier amplitudes. The core of our motion trackingalgorithm can be implemented as a classical frame-wiseslice-to-volume registration task. Preliminary results onboth synthetic and real images confirm the validity ofour approach.
Resumo:
We considered trends in mortality from leukemia in Europe over the period 1970-2009 using data from the World Health Organization. We computed age-standardized (world population) mortality rates, at all ages and in selected age groups, in 11 selected European countries, the European Union (EU) and, for comparative purposes, in the USA and Japan. For the EU, we also provided projections of the mortality to 2012. Over the period considered, mortality from leukemia steadily declined in most European countries in children and young adults, as well as in western and southern Europe at middle-age (45-69 years); in central/eastern Europe, reductions at ages 45-69 started since the mid-late 1990s. In the EU, annual percent changes were -3.7% in males and -3.8% in females at age 0-14, -2% in both sexes at age 15-44, and -0.6% in males and -1% in females at middle-age and overall. No decline was observed at age 70 or more. Between 1997 and 2007, overall EU rates decreased from 5.4 to 4.8/100,000 males and from 3.4 to 2.9/100,000 females. Declines were from 6.2 to 5.5/100,000 males and from 3.7 to 3.2/100,000 females in the USA and from 3.9 to 3.5/100,000 males and from 2.5 to 2.0/100,000 females in Japan. Projected overall rates in the EU at 2012 are 4.3/100,000 males (-11% compared to 2007) and 2.6/100,000 females (-12%).
Resumo:
Multisensory and sensorimotor integrations are usually considered to occur in superior colliculus and cerebral cortex, but few studies proposed the thalamus as being involved in these integrative processes. We investigated whether the organization of the thalamocortical (TC) systems for different modalities partly overlap, representing an anatomical support for multisensory and sensorimotor interplay in thalamus. In 2 macaque monkeys, 6 neuroanatomical tracers were injected in the rostral and caudal auditory cortex, posterior parietal cortex (PE/PEa in area 5), and dorsal and ventral premotor cortical areas (PMd, PMv), demonstrating the existence of overlapping territories of thalamic projections to areas of different modalities (sensory and motor). TC projections, distinct from the ones arising from specific unimodal sensory nuclei, were observed from motor thalamus to PE/PEa or auditory cortex and from sensory thalamus to PMd/PMv. The central lateral nucleus and the mediodorsal nucleus project to all injected areas, but the most significant overlap across modalities was found in the medial pulvinar nucleus. The present results demonstrate the presence of thalamic territories integrating different sensory modalities with motor attributes. Based on the divergent/convergent pattern of TC and corticothalamic projections, 4 distinct mechanisms of multisensory and sensorimotor interplay are proposed.
Resumo:
Colour pattern diversity can be due to random processes or to natural or sexual selection. Consequently, similarities in colour patterns are not always correlated with common ancestry, but may result from convergent evolution under shared selection pressures or drift. Neolamprologus brichardi and Neolamprologus pulcher have been described as two distinct species based on differences in the arrangement of two dark bars on the operculum. Our study uses DNA sequences of the mitochondrial control region to show that relatedness of haplotypes disagrees with species assignment based on head colour pattern. This suggests repeated parallel evolution of particular stripe patterns. The complete lack of shared haplotypes between populations of the same or different phenotypes reflects strong philopatric behaviour, possibly induced by the cooperative breeding mode in which offspring remain in their natal territory and serve as helpers until they disperse to nearby territories or take over a breeding position. Concordant phylogeographic patterns between N. brichardi/N. pulcher populations and other rock-dwelling cichlids suggest that the same colonization routes have been taken by sympatric species and that these routes were affected by lake level fluctuations in the past.