61 resultados para POROUS ALUMINA


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanoparticles (NPs) are being used or explored for the development of biomedical applications in diagnosis and therapy, including imaging and drug delivery. Therefore, reliable tools are needed to study the behavior of NPs in biological environment, in particular the transport of NPs across biological barriers, including the blood-brain tumor barrier (BBTB), a challenging question. Previous studies have addressed the translocation of NPs of various compositions across cell layers, mostly using only one type of cells. Using a coculture model of the human BBTB, consisting in human cerebral endothelial cells preloaded with ultrasmall superparamagnetic iron oxide nanoparticles (USPIO NPs) and unloaded human glioblastoma cells grown on each side of newly developed ultrathin permeable silicon nitride supports as a model of the human BBTB, we demonstrate for the first time the transfer of USPIO NPs from human brain-derived endothelial cells to glioblastoma cells. The reduced thickness of the permeable mechanical support compares better than commercially available polymeric supports to the thickness of the basement membrane of the cerebral vascular system. These results are the first report supporting the possibility that USPIO NPs could be directly transferred from endothelial cells to glioblastoma cells across a BBTB. Thus, the use of such ultrathin porous supports provides a new in vitro approach to study the delivery of nanotherapeutics to brain cancers. Our results also suggest a novel possibility for nanoparticles to deliver therapeutics to the brain using endothelial to neural cells transfer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A continuum of carbon, from atmospheric CO2 to secondary calcium carbonate, has been studied in a soil associ- ated with scree slope deposits in the Jura Mountains of Switzerland. This approach is based on former studies conducted in other environments. This C continuum includes atmospheric CO2, soil organic matter (SOM), soil CO2, dissolved inorganic carbon (DIC) in soil solutions, and secondary pedogenic carbonate. Soil parameters (pCO2, temperature, pH, Cmin and Corg contents), soil solution chemistry, and isotopic compositions of soil CO2, DIC, carbonate and soil organic matter (δ13CCO2, δ13CDIC, δ13Ccar and δ13CSOM values) have been monitored at different depths (from 20 to 140 cm) over one year. Results demonstrated that the carbon source in secondary carbonate (mainly needle fiber calcite) is related to the dissolved inorganic carbon, which is strongly dependent on soil respiration. The heterotrophic respiration, rather than the limestone parent material, seems to control the pedogenic carbon cycle. The correlation of δ13Corg values with Rock-Eval HI and OI indices demonstrates that, in a soil associated to scree slope deposits, the main process responsible for 13C-enrichment in SOM is related to bac- terial oxidative decarboxylation. Finally, precipitation of secondary calcium carbonate is enhanced by changes in soil pCO2 associated to the convective movement of air masses induced by temperature gradients (heat pump effect) in the highly porous scree slope deposits. The exportation of soil C-leachates from systems such as the one studied in this paper could partially explain the "gap in the European carbon budget" reported by recent studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Allegre et al. recently presented new experimental data regarding the dependence of the streaming potential coupling coefficient with the saturation of the water phase. Such experiments are important to model the self-potential response associated with the flow of water in the vadose zone and the electroseismic/seismoelectric conversions in unsaturated porous media. However, the approach used to interpret the data is questionable and the conclusions reached by Allegre et al. likely incorrect

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Determining the time since deposition of fingermarks may prove necessary in order to assess their relevance to criminal investigations. The crucial factor is the initial composition of fingermarks because it represents the starting point of any ageing model. This study mainly aimed to characterize the initial composition of fingerprints, which show a high variability between donors (inter-variability), but also to investigate the variations among fingerprints from the same donor (intra-variability). Solutions to reduce this initial variability using squalene and cholesterol as target compounds are proposed and should be further investigated. The influence of substrates was also evaluated and the initial composition was observed to be larger on porous surface than non-porous surfaces. Preliminary aging of fingerprints over 30 days was finally studied on a porous and a non-porous substrate to evaluate the potential for dating of fingermarks. Squalene was observed to decrease in a faster rate on a non-porous substrate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a novel spatiotemporal-adaptive Multiscale Finite Volume (MsFV) method, which is based on the natural idea that the global coarse-scale problem has longer characteristic time than the local fine-scale problems. As a consequence, the global problem can be solved with larger time steps than the local problems. In contrast to the pressure-transport splitting usually employed in the standard MsFV approach, we propose to start directly with a local-global splitting that allows to locally retain the original degree of coupling. This is crucial for highly non-linear systems or in the presence of physical instabilities. To obtain an accurate and efficient algorithm, we devise new adaptive criteria for global update that are based on changes of coarse-scale quantities rather than on fine-scale quantities, as it is routinely done before in the adaptive MsFV method. By means of a complexity analysis we show that the adaptive approach gives a noticeable speed-up with respect to the standard MsFV algorithm. In particular, it is efficient in case of large upscaling factors, which is important for multiphysics problems. Based on the observation that local time stepping acts as a smoother, we devise a self-correcting algorithm which incorporates the information from previous times to improve the quality of the multiscale approximation. We present results of multiphase flow simulations both for Darcy-scale and multiphysics (hybrid) problems, in which a local pore-scale description is combined with a global Darcy-like description. The novel spatiotemporal-adaptive multiscale method based on the local-global splitting is not limited to porous media flow problems, but it can be extended to any system described by a set of conservation equations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The UHPLC strategy which combines sub-2 microm porous particles and ultra-high pressure (>1000 bar) was investigated considering very high resolution criteria in both isocratic and gradient modes, with mobile phase temperatures between 30 and 90 degrees C. In isocratic mode, experimental conditions to reach the maximal efficiency were determined using the kinetic plot representation for DeltaP(max)=1000 bar. It has been first confirmed that the molecular weight of the compounds (MW) was a critical parameter which should be considered in the construction of such curves. With a MW around 1000 g mol(-1), efficiencies as high as 300,000 plates could be theoretically attained using UHPLC at 30 degrees C. By limiting the column length to 450 mm, the maximal plate count was around 100,000. In gradient mode, the longest column does not provide the maximal peak capacity for a given analysis time in UHPLC. This was attributed to the fact that peak capacity is not only related to the plate number but also to column dead time. Therefore, a compromise should be found and a 150 mm column should be preferentially selected for gradient lengths up to 60 min at 30 degrees C, while the columns coupled in series (3x 150 mm) were attractive only for t(grad)>250 min. Compared to 30 degrees C, peak capacities were increased by about 20-30% for a constant gradient length at 90 degrees C and gradient time decreased by 2-fold for an identical peak capacity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The origin of andesite is an important issue in petrology because andesite is the main eruptive product at convergent margins, corresponds to the average crustal composition and is often associated with major Cu-Au mineralization. In this study we present petrographic, mineralogical, geochemical and isotopic data for basaltic andesites of the latest Pleistocene Pilavo volcano, one of the most frontal volcanoes of the Ecuadorian Quaternary arc, situated upon thick (30-50 km) mafic crust composed of accreted Cretaceous oceanic plateau rocks and overlying mafic to intermediate Late Cretaceous-Late Tertiary magmatic arcs. The Pilavo rocks are basaltic andesites (54-57 center dot 5 wt % SiO(2)) with a tholeiitic affinity as opposed to the typical calc-alkaline high-silica andesites and dacites (SiO(2) 59-66 wt %) of other frontal arc volcanoes of Ecuador (e.g. Pichincha, Pululahua). They have much higher incompatible element contents (e.g. Sr 650-1350 ppm, Ba 650-1800 ppm, Zr 100-225 ppm, Th 5-25 ppm, La 15-65 ppm) and Th/La ratios (0 center dot 28-0 center dot 36) than Pichincha and Pululahua, and more primitive Sr ((87)Sr/(86)Sr similar to 0 center dot 7038-0 center dot 7039) and Nd (epsilon(Nd) similar to +5 center dot 5 to +6 center dot 1) isotopic signatures. Pilavo andesites have geochemical affinities with modern and recent high-MgO andesites (e.g. low-silica adakites, Setouchi sanukites) and, especially, with Archean sanukitoids, for both of which incompatible element enrichments are believed to result from interactions of slab melts with peridotitic mantle. Petrographic, mineral chemistry, bulk-rock geochemical and isotopic data indicate that the Pilavo magmatic rocks have evolved through three main stages: (1) generation of a basaltic magma in the mantle wedge region by flux melting induced by slab-derived fluids (aqueous, supercritical or melts); (2) high-pressure differentiation of the basaltic melt (at the mantle-crust boundary or at lower crustal levels) through sustained fractionation of olivine and clinopyroxene, leading to hydrous, high-alumina basaltic andesite melts with a tholeiitic affinity, enriched in incompatible elements and strongly impoverished in Ni and Cr; (3) establishment of one or more mid-crustal magma storage reservoirs in which the magmas evolved through dominant amphibole and clinopyroxene (but no plagioclase) fractionation accompanied by assimilation of the modified plutonic roots of the arc and recharge by incoming batches of more primitive magma from depth. The latter process has resulted in strongly increasing incompatible element concentrations in the Pilavo basaltic andesites, coupled with slightly increasing crustal isotopic signatures and a shift towards a more calc-alkaline affinity. Our data show that, although ultimately originating from the slab, incompatible element abundances in arc andesites with primitive isotopic signatures can be significantly enhanced by intra-crustal processes within a thick juvenile mafic crust, thus providing an additional process for the generation of enriched andesites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The in situ deposition of zinc oxide on gold nanoparticles in aqueous solution has been here successfully applied in the field of fingermark detection on various non-porous surfaces. In this article, we present the improvement of the multimetal deposition, an existing technique limited up to now to non-luminescent results, by obtaining luminescent fingermarks with very good contrast and details. This is seen as a major improvement in the field in terms of selectivity and sensitivity of detection, especially on black surfaces.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we present a processing route to produce multi-structured ceramic foams based on the combination of particle-stabilized foams with polymeric sponges to produce positive and negative templating structures. Polyester sponges are infiltrated with freshly produced calcium aluminate alumina foams and upon sintering either positive templating structures are produced when wetting the sponges, or negative templating foams with a percolating pore network are obtained when completely filling the sponges. Additionally, by combining different layers of these particle-stabilized foam infiltrated sponges, various different structures can be produced, including sandwich structures, pore size gradients, and ceramic bone-like structures applying to different types of bone. The particle-stabilized foams used were in situ self-hardening calcium aluminate cement enriched alumina foams to obtain crack-free samples with pore interconnections and tailorable pore sizes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the activities of fluconazole, caspofungin, anidulafungin, and amphotericin B against Candida species in planktonic form and biofilms using a highly sensitive assay measuring growth-related heat production (microcalorimetry). C. albicans, C. glabrata, C. krusei, and C. parapsilosis were tested, and MICs were determined by the broth microdilution method. The antifungal activities were determined by isothermal microcalorimetry at 37°C in RPMI 1640. For planktonic Candida, heat flow was measured in the presence of antifungal dilutions for 24 h. Candida biofilm was formed on porous glass beads for 24 h and exposed to serial dilutions of antifungals for 24 h, and heat flow was measured for 48 h. The minimum heat inhibitory concentration (MHIC) was defined as the lowest antifungal concentration reducing the heat flow peak by ≥50% (≥90% for amphotericin B) at 24 h for planktonic Candida and at 48 h for Candida biofilms (measured also at 24 h). Fluconazole (planktonic MHICs, 0.25 to >512 μg/ml) and amphotericin B (planktonic MHICs, 0.25 to 1 μg/ml) showed higher MHICs than anidulafungin (planktonic MHICs, 0.015 to 0.5 μg/ml) and caspofungin (planktonic MHICs, 0.125 to 0.5 μg/ml). Against Candida species in biofilms, fluconazole's activity was reduced by >1,000-fold compared to its activity against the planktonic counterparts, whereas echinocandins and amphotericin B mainly preserved their activities. Fluconazole induced growth of planktonic C. krusei at sub-MICs. At high concentrations of caspofungin (>4 μg/ml), paradoxical growth of planktonic C. albicans and C. glabrata was observed. Microcalorimetry enabled real-time evaluation of antifungal activities against planktonic and biofilm Candida organisms. It can be used in the future to evaluate new antifungals and antifungal combinations and to study resistant strains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction The importance of the micromovements in the mechanism of aseptic loosening is clinically difficult to evaluate. To complete the analysis of a series of total knee arthroplasties (TKA), we used a tridimensional numerical model to study the micromovements of the tibial implant.Material and Methods Fifty one patients (with 57 cemented Porous Coated Anatomic TKAs) were reviewed (mean follow-up 4.5 year). Radiolucency at the tibial bone-cement interface was sought on the AP radiographs and divided in 7 areas. The distribution of the radiolucency was then correlated with the axis of the lower limb as measured on the orthoradiograms.The tridimensional numerical model is based on the finite element method. It allowed the measurement of the cemented prosthetic tibial implant's displacements and the microvements generated at bone-ciment interface. A total load (2000 Newton) was applied at first vertically and asymetrically on the tibial plateau, thereby simulating an axial deviation of the lower limbs. The vector's posterior inclination then permitted the addition of a tangential component to the axial load. This type of effort is generated by complex biomechanical phenomena such as knee flexion.Results 81 per cent of the 57 knees had a radiolucent line of at least 1 mm, at one or more of the tibial cement-epiphysis jonctional areas. The distribution of these lucent lines showed that they came out more frequently at the periphery of the implant. The lucent lines appeared most often under the unloaded margin of the tibial plateau, when axial deviation of lower limbs was present.Numerical simulations showed that asymetrical loading on the tibial plateau induced a subsidence of the loaded margin (0-100 microns) and lifting off at the opposite border (0-70 microns). The postero-anterior tangential component induced an anterior displacement of the tibial implant (160-220 microns), and horizontal micromovements with non homogenous distribution at the bone-ciment interface (28-54 microns).Discussion Comparison of clinical and numerical results showed a relation between the development of radiolucent lines and the unloading of the tibial implant's margin. The deleterious effect of lower limbs' axial deviation is thereby proven. The irregular distribution of lucent lines under the tibial plateau was similar of the micromovements' repartition at the bone-cement interface when tangential forces were present. A causative relation between the two phenomenaes could not however be established.Numerical simulation is a truly useful method of study; it permits to calculate micromovements which are relative, non homogenous and of very low amplitude. However, comparative clinical studies remain as essential to ensure the credibility of results.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Zeta potential is a physico-chemical parameter of particular importance to describe sorption of contaminants at the surface of gas bubbles. Nevertheless, the interpretation of electrophoretic mobilities of gas bubbles is complex. This is due to the specific behavior of the gas at interface and to the excess of electrical charge at interface, which is responsible for surface conductivity. We developed a surface complexation model based on the presence of negative surface sites because the balance of accepting and donating hydrogen bonds is broken at interface. By considering protons adsorbed on these sites followed by a diffuse layer, the electrical potential at the head-end of the diffuse layer is computed and considered to be equal to the zeta potential. The predicted zeta potential values are in very good agreement with the experimental data of H-2 bubbles for a broad range of pH and NaCl concentrations. This implies that the shear plane is located at the head-end of the diffuse layer, contradicting the assumption of the presence of a stagnant diffuse layer at the gas/water interface. Our model also successfully predicts the surface tension of air bubbles in a KCl solution. (c) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The paper proposes an approach aimed at detecting optimal model parameter combinations to achieve the most representative description of uncertainty in the model performance. A classification problem is posed to find the regions of good fitting models according to the values of a cost function. Support Vector Machine (SVM) classification in the parameter space is applied to decide if a forward model simulation is to be computed for a particular generated model. SVM is particularly designed to tackle classification problems in high-dimensional space in a non-parametric and non-linear way. SVM decision boundaries determine the regions that are subject to the largest uncertainty in the cost function classification, and, therefore, provide guidelines for further iterative exploration of the model space. The proposed approach is illustrated by a synthetic example of fluid flow through porous media, which features highly variable response due to the parameter values' combination.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study wave-induced fluid flow effects in porous rocks partially saturated with gas and water, where the saturation patterns are governed by mesoscopic heterogeneities associated with the dry frame properties. The link between the dry frame properties and the gas saturation is defined by the assumption of capillary pressure equilibrium, which in the presence of heterogeneity implies that neighboring regions can exhibit different levels of saturation. In order to determine the equivalent attenuation and phase velocity of the synthetic rock samples considered in this study, we apply a numerical upscaling procedure, which permits to take into account mesoscopic heterogeneities associated with the dry frame properties as well as spatially continuous variations of the pore fluid properties. We consider numerical experiments to analyze such effects in heterogeneous partially saturated porous media, where the saturation field is determined by realistic variations in porosity. Our results indicate that the spatially continuous nature of gas saturation inherent to this study is a critical parameter controlling the seismic response of these environments, which in turn suggests that the physical mechanisms governing partial saturation should be accounted for when analyzing seismic data in a poro-elastic context.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a novel numerical approach for the comprehensive, flexible, and accurate simulation of poro-elastic wave propagation in 2D polar coordinates. An important application of this method and its extensions will be the modeling of complex seismic wave phenomena in fluid-filled boreholes, which represents a major, and as of yet largely unresolved, computational problem in exploration geophysics. In view of this, we consider a numerical mesh, which can be arbitrarily heterogeneous, consisting of two or more concentric rings representing the fluid in the center and the surrounding porous medium. The spatial discretization is based on a Chebyshev expansion in the radial direction and a Fourier expansion in the azimuthal direction and a Runge-Kutta integration scheme for the time evolution. A domain decomposition method is used to match the fluid-solid boundary conditions based on the method of characteristics. This multi-domain approach allows for significant reductions of the number of grid points in the azimuthal direction for the inner grid domain and thus for corresponding increases of the time step and enhancements of computational efficiency. The viability and accuracy of the proposed method has been rigorously tested and verified through comparisons with analytical solutions as well as with the results obtained with a corresponding, previously published, and independently bench-marked solution for 2D Cartesian coordinates. Finally, the proposed numerical solution also satisfies the reciprocity theorem, which indicates that the inherent singularity associated with the origin of the polar coordinate system is adequately handled.