18 resultados para On-line communities
Resumo:
Background: Fine particulate matter originating from traffic correlates with increased morbidity and mortality. An important source of traffic particles is brake wear of cars which contributes up to 20% of the total traffic emissions. The aim of this study was to evaluate potential toxicological effects of human epithelial lung cells exposed to freshly generated brake wear particles. Results: An exposure box was mounted around a car's braking system. Lung cells cultured at the air-liquid interface were then exposed to particles emitted from two typical braking behaviours ("full stop" and "normal deceleration"). The particle size distribution as well as the brake emission components like metals and carbons was measured on-line, and the particles deposited on grids for transmission electron microscopy were counted. The tight junction arrangement was observed by laser scanning microscopy. Cellular responses were assessed by measurement of lactate dehydrogenase (cytotoxicity), by investigating the production of reactive oxidative species and the release of the pro-inflammatory mediator interleukin-8. The tight junction protein occludin density decreased significantly (p < 0.05) with increasing concentrations of metals on the particles (iron, copper and manganese, which were all strongly correlated with each other). Occludin was also negatively correlated with the intensity of reactive oxidative species. The concentrations of interleukin-8 were significantly correlated with increasing organic carbon concentrations. No correlation was observed between occludin and interleukin-8, nor between reactive oxidative species and interleukin-8. Conclusion: These findings suggest that the metals on brake wear particles damage tight junctions with a mechanism involving oxidative stress. Brake wear particles also increase pro-inflammatory responses. However, this might be due to another mechanism than via oxidative stress. [Authors]
Resumo:
Background and objective: Oral anti-cancer treatments have expanded rapidly over the last years. While taking oral tablets at home ensures a better quality of life, it also exposes patients to the risk of sub-optimal adherence. The objective of this study is to assess how well ambulatory cancer patients execute their prescribed dosing regimen while they are engaged with continuous anti-cancer treatments. Design: This is an on-going longitudinal study. Consecutive patients starting an oral treatment are proposed to enter the study by the oncologist. Then they are referred to the pharmacy, where their oral anticancer treatment is dispensed in a Medication Event Monitoring System (MEMSTM), which records date and time of each opening of the drug container. Electronically compiled dosing history data from the MEMS are summarized and used as feedback during semistructured interviews with the pharmacist, which are dedicated to prevention and management of side effects. Interviews are scheduled before each medical visit. Report of the interview is available to the oncologist via an on-line secured portal. Setting: Seamless care approach between a Multidisciplinary Oncology Center and the Pharmacy of an Ambulatory Care and Community Medicine Department. Main outcome measures: For each patient, the comparison between the electronically compiled dosing history and the prescribed regimen was summarized using a daily binary indicator indicating whether yes or no the patient has taken the medication as prescribed. Results: Study started in March 2008. Among 22 eligible patients, 19 were included (11 men, median age 63 years old) and 3 (14%) refused to participate. 15 patients were prescribed a QD regimen, 3 patients a BID and 1 patient switched from QD to BID during follow-up. Median follow up was 182 days (IQR 72-252). Early discontinuation happened in four patients: side effects (n = 1), psychiatric reasons (n = 1), cancer progression (n = 1) and death (n = 1). On average, the daily number of medications was taken as prescribed in 99% of the follow-up days. Conclusions: Execution of the prescribed dosing regimens was almost perfect during the first 6 months. Maintaining this high degree of regimen execution and persistence over time might however be challenging in this population and need therefore to be confirmed in larger and longer follow-up cohort studies.
Resumo:
The aim of this work was to determine the effect of light crude oil on bacterial communities during an experimental oil spill in the North Sea and in mesocosms (simulating a heavy, enclosed oil spill), and to isolate and characterize hydrocarbon-degrading bacteria from the water column. No oil-induced changes in bacterial community (3 m below the sea surface) were observed 32 h after the experimental spill at sea. In contrast, there was a decrease in the dominant SAR11 phylotype and an increase in Pseudoalteromonas spp. in the oiled mesocosms (investigated by 16S rRNA gene analysis using denaturing gradient gel electrophoresis), as a consequence of the longer incubation, closer proximity of the samples to oil, and the lack of replenishment with seawater. A total of 216 strains were isolated from hydrocarbon enrichment cultures, predominantly belonging to the genus Pseudoaltero monas; most strains grew on PAHs, branched and straight-chain alkanes, as well as many other carbon sources. No obligate hydrocarbonoclastic bacteria were isolated or detected, highlighting the potential importance of cosmopolitan marine generalists like Pseudoalteromonas spp. in degrading hydrocarbons in the water column beneath an oil slick, and revealing the susceptibility to oil pollution of SAR11, the most abundant bacterial clade in the surface ocean.