77 resultados para OPIOID MODULATION
Resumo:
Background: CD8 T-cells play a critical role in antiviral immunity. However, mechanisms of virus control and immune correlates of protection are still not fully understood. Among other factors, TCR avidity (antigen sensitivity) is thought to play a critical role. Whereas there is a large consensus that high TCR avidity T-cell responses are correlated to higher efficacy against cancer and acute viral infections, it may be not the case in chronic persistent viral infections. Methods: TCR avidity (measured by the effect concentration 50% [EC50]) of HIV-1-specific CD8 T-cell responses directed against optimal epitopes was investigated in different cohorts of HIV-1- infected subjects (n¼114) including early acute and chronic (progressive and non-progressive) HIV-1-infection. Overall, TCR avidity was investigated in 245 HIV-1-specific CD8 T-cell responses. The relationships between TCR avidity, T-cell differentiation and functional profile including cytokine secretion, proliferation and cytotoxic potential (determined by polychromatic flow cytometry) were analyzed. Results: HIV-1-specific CD8 T-cell responses from patients with acute infection had significantly lower TCR avidity as compared to patients with chronic (progressive or non-progressive) HIVinfection (P¼0.03 and 0.003, respectively). These differences remained significant when the analyses were restricted to common epitopes (same epitopes restricted by the same class I HLA). Interestingly, some patients treated during acute infection underwent spontaneous treatment interruption. Re-exposure to high viral load induced two major effects: a) the increase in TCR avidity of pre-existing high avidity (EC50<0.01) T-cell responses (P<0.02) and b) the generation of new T-cell responses with higher TCR avidity as compared to the average pre-existing T-cell responses. Conclusion: These results suggest that high TCR avidity T-cell responses are selected during the course of HIV-1 infection and that one of the potential driving mechanisms is continuous exposure to HIV-1 antigens. These results advance our understanding of the relationship between TCR avidity and Ag exposure of antiviral memory CD8 T-cells.
Resumo:
It is currently suspected that sugar overconsumption, and more specifically fructose, may promote the development of obesity and of several cardio-metabolic disorders. However, environmental factors, such as fish oil and dietary proteins, may prevent some deleterious effects of fructose. The aim of this thesis was to identify potential environmental factors that may modulate the metabolic effects of fructose. The first study was designed to evaluate the impact of endurance exercise in healthy young men fed a high-fructose, isocaloric diet. Fructose-induced effects on lipid profile were totally prevented by endurance exercise and may be explained by an enhanced clearance of TRL-TG and the inhibition of de novo lipogenesis. As energy intake was adjusted to energy requirement, we can conclude that exercise acts on fructose metabolism independently of energy imbalance. The second study aimed at determining whether coffee and more specifically chlorogenic acid consumption may prevent fructose-induced intrahepatic lipids accumulation, hypertriglyceridemia and hepatic insulin resistance, through a stimulation of lipid oxidation. Coffee did not prevent the fructose-induced increase in IHCL or plasma TG. Interestingly, the three coffees tested prevented the decrease in hepatic insulin sensitivity, independently of their content in caffeine or chlorogenic acid. Finally, in the third study, we evaluated the effect of essential amino acid supplementation on the increase of hepatic lipids induced by a high-fructose diet. This intervention slightly decreased IHCL concentration. The exact mechanisms remain unidentified but may involve an increased secretion of VLDL-TG. In conclusion, the environmental factors evaluated allow to prevent some of the deleterious effects of fructose and suggest that recommendations on fructose consumption should also take into account environmental factors.
Resumo:
Methadone is widely used for the treatment of opioid dependence. Although in most countries the drug is administered as a racemic mixture of (R)- and (S)- methadone, (R)-methadone accounts for most, if not all, of the opioid effects. Methadone can be detected in the blood 15-45 minutes after oral administration, with peak plasma concentration at 2.5-4 hours. Methadone has a mean bioavailability of around 75% (range 36-100%). Methadone is highly bound to plasma proteins, in particular to alpha(1)-acid glycoprotein. Its mean free fraction is around 13%, with a 4-fold interindividual variation. Its volume of distribution is about 4 L/kg (range 2-13 L/kg). The elimination of methadone is mediated by biotransformation, followed by renal and faecal excretion. Total body clearance is about 0.095 L/min, with wide interindividual variation (range 0.02-2 L/min). Plasma concentrations of methadone decrease in a biexponential manner, with a mean value of around 22 hours (range 5-130 hours) for elimination half-life. For the active (R)-enantiomer, mean values of around 40 hours have been determined. Cytochrome P450 (CYP) 3A4 and to a lesser extent 2D6 are probably the main isoforms involved in methadone metabolism. Rifampicin (rifampin), phenobarbital, phenytoin, carbamazepine, nevirapine, and efavirenz decrease methadone blood concentrations, probably by induction of CYP3A4 activity, which can result in severe withdrawal symptoms. Inhibitors of CYP3A4, such as fluconazole, and of CYP2D6, such as paroxetine, increase methadone blood concentrations. There is an up to 17-fold interindividual variation of methadone blood concentration for a given dosage, and interindividual variability of CYP enzymes accounts for a large part of this variation. Since methadone probably also displays large interindividual variability in its pharmacodynamics, methadone treatment must be individually adapted to each patient. Because of the high morbidity and mortality associated with opioid dependence, it is of major importance that methadone is used at an effective dosage in maintenance treatment: at least 60 mg/day, but typically 80-100 mg/day. Recent studies also show that a subset of patients might benefit from methadone dosages larger than 100 mg/day, many of them because of high clearance. In clinical management, medical evaluation of objective signs and subjective symptoms is sufficient for dosage titration in most patients. However, therapeutic drug monitoring can be useful in particular situations. In the case of non-response trough plasma concentrations of 400 microg/L for (R,S)-methadone or 250 microg/L for (R)-methadone might be used as target values.
Resumo:
BACKGROUND/AIMS: Switzerland's drug policy model has always been unique and progressive, but there is a need to reassess this system in a rapidly changing world. The IMPROVE study was conducted to gain understanding of the attitudes and beliefs towards opioid maintenance therapy (OMT) in Switzerland with regards to quality and access to treatment. To obtain a "real-world" view on OMT, the study approached its goals from two different angles: from the perspectives of the OMT patients and of the physicians who treat patients with maintenance therapy. The IMPROVE study collected a large body of data on OMT in Switzerland. This paper presents a small subset of the dataset, focusing on the research design and methodology, the profile of the participants and the responses to several key questions addressed by the questionnaires. METHODS: IMPROVE was an observational, questionnaire-based cross-sectional study on OMT conducted in Switzerland. Respondents consisted of OMT patients and treating physicians from various regions of the country. Data were collected using questionnaires in German and French. Physicians were interviewed by phone with a computer-based questionnaire. Patients self-completed a paper-based questionnaire at the physicians' offices or OMT treatment centres. RESULTS: A total of 200 physicians and 207 patients participated in the study. Liquid methadone and methadone tablets or capsules were the medications most commonly prescribed by physicians (60% and 20% of patient load, respectively) whereas buprenorphine use was less frequent. Patients (88%) and physicians (83%) were generally satisfied with the OMT currently offered. The current political framework and lack of training or information were cited as determining factors that deter physicians from engaging in OMT. About 31% of OMT physicians interviewed were ≥60 years old, indicating an ageing population. Diversion and misuse were considered a significant problem in Switzerland by 45% of the physicians. CONCLUSION: The subset of IMPROVE data presented gives a present-day, real-life overview of the OMT landscape in Switzerland. It represents a valuable resource for policy makers, key opinion leaders and drug addiction researchers and will be a useful basis for improving the current Swiss OMT model.
Resumo:
Cell-to-cell communication mediated by gap junctions made of Connexin36 (Cx36) contributes to pancreatic β-cell function. We have recently demonstrated that Cx36 also supports β-cell survival by a still unclear mechanism. Using specific Cx36 siRNAs or adenoviral vectors, we now show that Cx36 downregulation promotes apoptosis in INS-1E cells exposed to the pro-inflammatory cytokines (IL-1β, TNF-α and IFN-γ) involved at the onset of type 1 diabetes, whereas Cx36 overexpression protects against this effect. Cx36 overexpression also protects INS-1E cells against endoplasmic reticulum (ER) stress-mediated apoptosis, and alleviates the cytokine-induced production of reactive oxygen species, the depletion of the ER Ca(2+) stores, the CHOP overexpression and the degradation of the anti-apoptotic protein Bcl-2 and Mcl-1. We further show that cytokines activate the AMP-dependent protein kinase (AMPK) in a NO-dependent and ER-stress-dependent manner and that AMPK inhibits Cx36 expression. Altogether, the data suggest that Cx36 is involved in Ca(2+) homeostasis within the ER and that Cx36 expression is downregulated following ER stress and subsequent AMPK activation. As a result, cytokine-induced Cx36 downregulation elicits a positive feedback loop that amplifies ER stress and AMPK activation, leading to further Cx36 downregulation. The data reveal that Cx36 plays a central role in the oxidative stress and ER stress induced by cytokines and the subsequent regulation of AMPK activity, which in turn controls Cx36 expression and mitochondria-dependent apoptosis of insulin-producing cells.
Resumo:
Acid-sensing ion channels (ASICs) are neuronal Na(+)-selective channels that are transiently activated by extracellular acidification. ASICs are involved in fear and anxiety, learning, neurodegeneration after ischemic stroke, and pain sensation. The small molecule 2-guanidine-4-methylquinazoline (GMQ) was recently shown to open ASIC3 at physiological pH. We have investigated the mechanisms underlying this effect and the possibility that GMQ may alter the function of other ASICs besides ASIC3. GMQ shifts the pH dependence of activation to more acidic pH in ASIC1a and ASIC1b, whereas in ASIC3 this shift goes in the opposite direction and is accompanied by a decrease in its steepness. GMQ also induces an acidic shift of the pH dependence of inactivation of ASIC1a, -1b, -2a, and -3. As a consequence, the activation and inactivation curves of ASIC3 but not other ASICs overlap in the presence of GMQ at pH 7.4, thereby creating a window current. At concentrations >1 mm, GMQ decreases maximal peak currents by reducing the unitary current amplitude. Mutation of residue Glu-79 in the palm domain of ASIC3, previously shown to be critical for channel opening by GMQ, disrupted the GMQ effects on inactivation but not activation. This suggests that this residue is involved in the consequences of GMQ binding rather than in the binding interaction itself. This study describes the mechanisms underlying the effects of a novel class of ligands that modulate the function of all ASICs as well as activate ASIC3 at physiological pH.
Resumo:
BACKGROUND: While detoxification under anaesthesia accelerates the detoxification procedure, there is a lack of randomised clinical trials evaluating its effectiveness compared to traditional detoxification procedures, and a lack of data on long-term abstinence. METHODS: Prospective randomised clinical trial. Analysis by intention to treat and per protocol. Setting: Specialised substance abuse unit in a psychiatric teaching hospital and an intensive care unit of a general hospital. Participants: Seventy patients with opiate mono-dependence requesting detoxification: 36 randomised to RODA (treatment as allocated received by 26) and 34 randomised to classical clonidine detoxification (treatment as allocated received by 21). Main outcome measures: Successful detoxification, safety and self-reported abstinence at 3, 6 and 12 months after detoxification. RESULTS: Socio-demographics were similar in both groups at baseline. No complications were reported during or after anaesthesia. According to the intention to treat analysis, 28/36 (78%) RODA patients and 21/34 (62%) of the clonidine group successfully completed the detoxification process (p=0.14). In the intention to treat analysis, 30% of RODA patients were abstinent after 3 months compared to 14% in the clonidine group (p=0.11). No difference was found at 6 and 12 months (both groups showed less than 5% abstinence after 12 months). The per-protocol analysis showed similar results with no statistical differences either for ASI mean scores or for the SF36 questionnaire. CONCLUSION: Although the detoxification success rate and abstinence after 3 months were slightly better for the RODA procedure compared to clonidine treatment, these differences were not statistically significant and disappeared completely after 6 and 12 months.
Resumo:
ABSTRACT Allergic asthma is a major complication of atopy. Its severity correlates with the presence of activated T lymphocytes and eosinophils in the bronchoalveolar lavage fluid (BALF). Mechanisms that protect against asthma are poorly understood. Based on oral models of mucosal tolerance induction, models using the nasal route showed that uptake of important amounts of antigen can induce tolerance and reverse the allergic phenotype. 1L-10 producing regulatory T cells were proposed as key players in tolerance induction, but other players, e.g. dendritic cells (DC), B cells and epithelial cells may have to be taken into consideration. The objective of the present study is to characterize the effects of a therapeutic intranasal treatment (INT) in a murine model of asthma and to determine, in this model, the cellular and molecular mechanisms leading to protection against asthma. First, we established an asthma model by sensitizing the BALB/c mouse to ovalbumin (OVA) by two intraperitoneal injections of alum-adsorbed OVA and three inhalations of aerosolized OVA. Then OVA was applied to the nasal mucosa of OVA- sensitized mice. Mice were later re-exposed to OVA aerosols to assess the protection induced by OVA INT. OVA sensitization induced strong eosinophil recruitment, OVA-specific T cell proliferation and IgE production. Three intranasal treatments at 24-hour intervals with 1.5 mg OVA drastically reduced inflammatory cell recruitment into the BALF and inhibited OVA-specific IgE production upon allergen re-exposure. T cell proliferation in ex vivo bronchial lymph node (BLN) cells was inhibited, as well as TH2 cytokine production. Protection against OVA-induced bronchial inflammation was effective for an extended period of time and treated mice resisted a second re-exposure. Transfer of CD4+ cells from BLN and lungs of OVA-treated mice protected asthmatic recipient mice from subsequent aerosol challenge indicating an involvement of CD4+ T regulatory cells in this protection. RESUME L'asthme allergique est une manifestation clinique majeure de l'atopie. La sévérité de l'asthme est liée à la présence de lymphocytes T activés ainsi que d'éosinophiles dans le lavage broncho-alvéolaire (LBA). Les mécanismes permettant de se prémunir contre l'asthme sont mal connus. Basés sur des modèles muqueux d'induction de tolérance par la voie orale, des modèles utilisant la voie nasale ont montré que d'importantes quantités d'antigène peuvent induire une tolérance et ainsi reverser le phénotype allergique. Des cellules régulatrices produisant de l'IL-10 pourraient jouer un rôle clé dans l'induction de la tolérance mais d'autres acteurs tels que les cellules dendritiques, les cellules B et les cellules épithéliales doivent aussi être prises en compte. L'objectif de la présente étude est de caractériser les effets d'un traitement intranasal thérapeutique dans un modèle murin d'asthme et de déterminer dans ce modèle les mécanismes cellulaires et moléculaires conférant une protection contre l'asthme. En premier lieu, un modèle d'asthme allergique a été établi en sensibilisant des souris BALB/c à l'ovalbumine (OVA) par deux injections intraperitonéales d'OVA adsorbé sur de l'alum et trois séances d'OVA en aérosol. Dans un second temps, de l'OVA a été administrée sur la muqueuse nasale des souris sensibilisées à l'OVA. Les souris furent ensuite challengées par des aérosols d'OVA afin d'évaluer la protection conférée par le traitement intranasal à l'OVA. La sensibilisation à l'OVA a induit un fort recrutement d'éosinophiles, une réponse proliférative des cellules T à l'OVA ainsi qu'une production d'lgE spécifiques. Trois traitements intranasaux à 24 heures d'intervalle avec 1.5 mg d'OVA ont permis de réduire drastiquement le recrutement des cellules inflammatoires dans le LBA ainsi que d'inhiber la production d'lgE spécifiques à l'OVA produits lors d'une ré-exposition à l'OVA. La prolifération en réponse à l'OVA de cellules extraites ex vivo de ganglions bronchiques a, elle aussi, été inhibée de même que la production de cytokines TH2. La protection contre l'inflammation provoquée par l'aérosol est efficace pour une longue période et les souris traitées résistent à une seconde ré- exposition. Le transfert de cellules CD4+ issues de ganglions bronchiques et de poumons de souris traitées à l'OVA protège les souris asthmatiques receveuses contre les effets inflammatoires d'un aérosol, indiquant que des cellules T CD4+ régulatrices pourraient être impliquées dans cette protection. RESUME DESTINE A UN LARGE PUBLIC L'asthme est une affection des voies respiratoires qui se caractérise par une contraction de la musculature des voies aériennes, une production de mucus et d'anticorps de l'allergie (IgE). On parle d'asthme allergique lorsque les facteurs déclenchant l'asthme sont des allergènes inhalés tels que acariens, pollens ou poils d'animaux. Le système immunitaire des patients asthmatiques a un défaut de programmation qui le rend réactif à des substances qui sont normalement inoffensives. Le traitement actuel de l'asthme repose sur le soulagement des symptômes grâce à des produits à base de stéroïdes. Les techniques permettant de reprogrammer le système immunitaire (immunothérapie) ne sont pas efficaces pour tous les antigènes et prennent beaucoup de temps. En conséquence, il est nécessaire de mieux comprendre les mécanismes sous-tendant une telle reprogrammation afin d'en améliorer le rendement et l'efficacité. Dans ce but, des modèles d'immunothérapie ont été mis au point chez la souris. Ils permettent une plus grande liberté d'investigation. Dans cette étude, un modèle d'asthme allergique dans la souris a été établi par une sensibilisation à un antigène particulier : l'ovalbumine (OVA). Ce modèle présente les caractéristiques principales de l'asthme humain : recrutement de cellules inflammatoires dans les poumons, augmentation de la production d'anticorps et de la résistance des bronches aux flux respiratoires. Cette souris asthmatique a ensuite été traitée par application nasale d'OVA. Comparées aux souris non traitées, les souris traitées à l'OVA ont moins de cellules inflammatoires dans leurs poumons et produisent moins d'anticorps IgE. D'autres marqueurs inflammatoires sont aussi fortement diminués. Des cellules de poumons ou de ganglions bronchiques prélevées sur des souris traitées injectées dans des souris asthmatiques améliorent les symptômes de l'asthme. Ces cellules pourraient donc avoir un rôle régulateur dans l'asthme. Les caractériser et les étudier afin d'être capable de les générer est crucial pour les futures thérapies de l'asthme.
Resumo:
The present study examined the bottom-up influence of emotional context on response inhibition, an issue that remains largely unstudied in children. Thus, 62 participants, aged from 6 to 13 years old, were assessed with three stop signal tasks: one with circles, one with neutral faces, and one with emotional faces (happy and sad). Results showed that emotional context altered response inhibition ability in childhood. However, no interaction between age and emotional influence on response inhibition was found. Positive emotions were recognized faster than negative emotions, but the valence did not have a significant influence on response inhibition abilities.
Resumo:
Les inhibiteurs de la protéase du VIH (IP) constituent une des classes de traitements antirétroviraux parmi les plus utilisés au cours de l'infection par le VIH. Leur utilisation est associée à divers effets secondaires, notamment la dyslipidémie, la résistance à l'insuline, la lipodystrophie et certaines complications cardio-vasculaires. Ces molécules ont également des propriétés anti-tumorales, décrites chez des patients non infectés par le VIH. Pourtant, les mécanismes moléculaires à l'origine de ces effets annexes restent méconnus. Dans ce travail, nous démontrons que les IP, comme le Nelfinavir, le Ritonavir, le Lopinavir, le Saquinavir et l'Atazanavir, entrainent la production d'interleukine-lß (IL-lß), une puissante cytokine pro-inflammatoire, connue pour son rôle central dans les maladies inflammatoires. La sécrétion d'IL-lß requiert la formation de l'inflammasome, un complexe protéique intracellulaire servant de plateforme d'activation de la caspase-1 et, par la suite, à la maturation protéolytique de certaines cytokines, dont l'IL-lß. Dans les macrophages murins en culture primaire, ainsi que dans une lignée de monocytes humains, nous démontrons que les IP augmentent la maturation et la sécrétion de l'IL-lß via l'induction d'un inflammasome dépendant de ASC. De plus, nous établissons que les IP induisent spécifiquement l'activation de AIM2, un inflammasome détectant la présence intracytosolique d'ADN viral ou bactérien. Nos résultats démontrent l'existence d'une nouvelle voie d'activation de l'inflammasome AIM2 par un signal endogène dont la nature reste à définir. Ces données suggèrent que AIM2 pourrait jouer un rôle important dans la promotion de l'activité anti-tumorale ainsi que dans les autres effets annexes observés chez les patients traités par IP. -- HIV protease inhibitors (Pis) are among the most often used classes of antiretroviral drugs for HIV infection. Treatment of patients with HIV-PIs is associated with the development of metabolic side effects including dyslipidemia, insulin resistance, lipodystrophy and cardiovascular complications. In addition, these drugs have been reported to have anti¬tumoral properties in non-infected patients, however the molecular mechanisms causing these off-target effects are still unclear. Here we show that the HIV-PIs, such as Nelfinavir, Ritonavir, Lopinavir, Saquinavir and Atazanavir, activate the production of interleukin-lß (IL-lß), a potent pro-inflammatory cytokine that plays a central role in the pathogenesis of inflammatory diseases. The release of IL-lß depends on the activation of the inflammasome, a multiprotein complex that serves as a platform for caspase-1 activation and subsequent proteolytic maturation of cytokines including IL-lß. We found that in mouse primary macrophages as well as in a human monocytic cell line, the HIV-PIs augment the maturation and secretion of IL-lß by triggering an ASC-dependent inflammasome activation. Moreover, we show that the HIV-PIs specifically engage AIM2, a recently characterized inflammasome -forming protein that was described to detect the cytosolic release of bacterial and viral DNA. Our findings demonstrate a new pathway of activation of the AIM2 inflammasome by a yet to be defined endogenous signal and may suggest a possible role for AIM2 in promoting anti¬tumoral activity and off-target effects observed in HIV-PIs treated patients.
Resumo:
BACKGROUND: Regional administration of high doses of tumor necrosis factor (TNF) and interferon gamma (IFN gamma) to metastatic melanoma patients causes selective disruption of the tumor vasculature. This effect is paralleled by decreased endothelial cell proliferation and suppressed integrin alpha V beta 3-mediated adhesion in vitro. Overexpression of the cyclin-dependent kinase (cdk) inhibitory protein p16INK4a was reported to interfere with integrin alpha V beta 3-dependent melanoma cell adhesion. MATERIALS AND METHODS: TNF- and IFN gamma-treated HUVEC were analyzed for cell cycle progression and for protein expression by flow cytometry and Western blotting, respectively. p16INK4a was overexpressed by transient transfection, and HUVEC adhesion was tested in short-term adhesion assays. RESULTS: TNF and IFN gamma synergistically induced a G1 arrest associated with reduced levels of cyclin D1 and cdk2, and increased expression of the cdk inhibitors p16INK4a, p21WAF and p27Kip1. p16INK4a overexpression, however, had no effect on alpha V beta 3-mediated adhesion. CONCLUSION: These results implicate the down-regulation of cyclin D1 and cdk-2, and up-regulation of p16INK4a, p21WAF and p27Kip1 in the suppression of endothelial cell proliferation induced by TNF/IFN gamma and demonstrate that increased p16INK4a levels are not sufficient to suppress alpha V beta 3-mediated endothelial cell adhesion.
Resumo:
Glioblastoma are rapidly proliferating brain tumors in which hypoxia is readily recognizable, as indicated by focal or extensive necrosis and vascular proliferation, two independent diagnostic criteria for glioblastoma. Gene expression profiling of glioblastoma revealed a gene expression signature associated with hypoxia-regulated genes. The correlated gene set emerging from unsupervised analysis comprised known hypoxia-inducible genes involved in angiogenesis and inflammation such as VEGF and BIRC3, respectively. The relationship between hypoxia-modulated angiogenic genes and inflammatory genes was associated with outcome in our cohort of glioblastoma patients treated within prospective clinical trials of combined chemoradiotherapy. The hypoxia regulation of several new genes comprised in this cluster including ZNF395, TNFAIP3, and TREM1 was experimentally confirmed in glioma cell lines and primary monocytes exposed to hypoxia in vitro. Interestingly, the cluster seems to characterize differential response of tumor cells, stromal cells and the macrophage/microglia compartment to hypoxic conditions. Most genes classically associated with the inflammatory compartment are part of the NF-kappaB signaling pathway including TNFAIP3 and BIRC3 that have been shown to be involved in resistance to chemotherapy.Our results associate hypoxia-driven tumor response with inflammation in glioblastoma, hence underlining the importance of tumor-host interaction involving the inflammatory compartment.
Resumo:
In addition to their well-known antinociceptive action, opioids can modulate non-neuronal functions, such as immune activity and physiology of different cell types. Several findings suggest that the delta-opioid receptor (DOR) and its endogenous ligands (enkephalins) are important players in cell differentiation and proliferation. Here we show the expression of DOR in mouse skin and human skin cultured fibroblasts and keratinocytes using RT-PCR. In DOR knock-out (KO) mice, a phenotype of thinner epidermis and higher expression of cell differentiation marker cytokeratin 10 (CK 10) were observed compared with wild type (WT). Using a burn wound model, significant wound healing delay (about 2 days) and severe epidermal hypertrophy were shown at the wound margin of DOR KO mice. This wound healing delay was further investigated by immunohistochemistry using markers for proliferation, differentiation, re-epithelialization, and dermal repair (CK 6, CK 10, and collagen IV). The levels of all these markers were increased in wounds of KO mice compared with WT. During the wound healing, the epidermal thickness in KO mice augments faster and exceeds that of the WT by day 3. These results suggest an essential role of DOR in skin differentiation, proliferation, and migration, factors that are important for wound healing.
Resumo:
Kinase-linked receptors and nuclear receptors connect external cues to gene transcription. Among nuclear receptors, peroxisome proliferator-activated receptors (PPARs) are of special interest in relation to widespread human diseases. Mapping out connections between PPARs and kinase-linked receptor signaling is central to better understand physiological and pathophysiological processes and to better define therapeutic strategies. This is the aim of the present review.