27 resultados para Nonlinear system modeling
Resumo:
This thesis is a compilation of projects to study sediment processes recharging debris flow channels. These works, conducted during my stay at the University of Lausanne, focus in the geological and morphological implications of torrent catchments to characterize debris supply, a fundamental element to predict debris flows. Other aspects of sediment dynamics are considered, e.g. the coupling headwaters - torrent, as well as the development of a modeling software that simulates sediment transfer in torrent systems. The sediment activity at Manival, an active torrent system of the northern French Alps, was investigated using terrestrial laser scanning and supplemented with geostructural investigations and a survey of sediment transferred in the main torrent. A full year of sediment flux could be observed, which coincided with two debris flows and several bedload transport events. This study revealed that both debris flows generated in the torrent and were preceded in time by recharge of material from the headwaters. Debris production occurred mostly during winter - early spring time and was caused by large slope failures. Sediment transfers were more puzzling, occurring almost exclusively in early spring subordinated to runoffconditions and in autumn during long rainfall. Intense rainstorms in summer did not affect debris storage that seems to rely on the stability of debris deposits. The morpho-geological implication in debris supply was evaluated using DEM and field surveys. A slope angle-based classification of topography could characterize the mode of debris production and transfer. A slope stability analysis derived from the structures in rock mass could assess susceptibility to failure. The modeled rockfall source areas included more than 97% of the recorded events and the sediment budgets appeared to be correlated to the density of potential slope failure. This work showed that the analysis of process-related terrain morphology and of susceptibility to slope failure document the sediment dynamics to quantitatively assess erosion zones leading to debris flow activity. The development of erosional landforms was evaluated by analyzing their geometry with the orientations of potential rock slope failure and with the direction of the maximum joint frequency. Structure in rock mass, but in particular wedge failure and the dominant discontinuities, appear as a first-order control of erosional mechanisms affecting bedrock- dominated catchment. They represent some weaknesses that are exploited primarily by mass wasting processes and erosion, promoting not only the initiation of rock couloirs and gullies, but also their propagation. Incorporating the geological control in geomorphic processes contributes to better understand the landscape evolution of active catchments. A sediment flux algorithm was implemented in a sediment cascade model that discretizes the torrent catchment in channel reaches and individual process-response systems. Each conceptual element includes in simple manner geomorphological and sediment flux information derived from GIS complemented with field mapping. This tool enables to simulate sediment transfers in channels considering evolving debris supply and conveyance, and helps reducing the uncertainty inherent to sediment budget prediction in torrent systems. Cette thèse est un recueil de projets d'études des processus de recharges sédimentaires des chenaux torrentiels. Ces travaux, réalisés lorsque j'étais employé à l'Université de Lausanne, se concentrent sur les implications géologiques et morphologiques des bassins dans l'apport de sédiments, élément fondamental dans la prédiction de laves torrentielles. D'autres aspects de dynamique sédimentaire ont été abordés, p. ex. le couplage torrent - bassin, ainsi qu'un modèle de simulation du transfert sédimentaire en milieu torrentiel. L'activité sédimentaire du Manival, un système torrentiel actif des Alpes françaises, a été étudiée par relevés au laser scanner terrestre et complétée par une étude géostructurale ainsi qu'un suivi du transfert en sédiments du torrent. Une année de flux sédimentaire a pu être observée, coïncidant avec deux laves torrentielles et plusieurs phénomènes de charriages. Cette étude a révélé que les laves s'étaient générées dans le torrent et étaient précédées par une recharge de débris depuis les versants. La production de débris s'est passée principalement en l'hiver - début du printemps, causée par de grandes ruptures de pentes. Le transfert était plus étrange, se produisant presque exclusivement au début du printemps subordonné aux conditions d'écoulement et en automne lors de longues pluies. Les orages d'été n'affectèrent guère les dépôts, qui semblent dépendre de leur stabilité. Les implications morpho-géologiques dans l'apport sédimentaire ont été évaluées à l'aide de MNT et études de terrain. Une classification de la topographie basée sur la pente a permis de charactériser le mode de production et transfert. Une analyse de stabilité de pente à partir des structures de roches a permis d'estimer la susceptibilité à la rupture. Les zones sources modélisées comprennent plus de 97% des chutes de blocs observées et les bilans sédimentaires sont corrélés à la densité de ruptures potentielles. Ce travail d'analyses des morphologies du terrain et de susceptibilité à la rupture documente la dynamique sédimentaire pour l'estimation quantitative des zones érosives induisant l'activité torrentielle. Le développement des formes d'érosion a été évalué par l'analyse de leur géométrie avec celle des ruptures potentielles et avec la direction de la fréquence maximale des joints. Les structures de roches, mais en particulier les dièdres et les discontinuités dominantes, semblent être très influents dans les mécanismes d'érosion affectant les bassins rocheux. Ils représentent des zones de faiblesse exploitées en priorité par les processus de démantèlement et d'érosion, encourageant l'initiation de ravines et couloirs, mais aussi leur propagation. L'incorporation du control géologique dans les processus de surface contribue à une meilleure compréhension de l'évolution topographique de bassins actifs. Un algorithme de flux sédimentaire a été implémenté dans un modèle en cascade, lequel divise le bassin en biefs et en systèmes individuels répondant aux processus. Chaque unité inclut de façon simple les informations géomorpologiques et celles du flux sédimentaire dérivées à partir de SIG et de cartographie de terrain. Cet outil permet la simulation des transferts de masse dans les chenaux, considérants la variabilité de l'apport et son transport, et aide à réduire l'incertitude liée à la prédiction de bilans sédimentaires torrentiels. Ce travail vise très humblement d'éclairer quelques aspects de la dynamique sédimentaire en milieu torrentiel.
Resumo:
Objectives: Acetate brain metabolism has the particularity to occur specifically in glial cells. Labeling studies, using acetate labeled either with 13C (NMR) or 11C (PET), are governed by the same biochemical reactions and thus follow the same mathematical principles. In this study, the objective was to adapt an NMR acetate brain metabolism model to analyse [1-11C]acetate infusion in rats. Methods: Brain acetate infusion experiments were modeled using a two-compartment model approach used in NMR.1-3 The [1-11C]acetate labeling study was done using a beta scintillator.4 The measured radioactive signal represents the time evolution of the sum of all labeled metabolites in the brain. Using a coincidence counter in parallel, an arterial input curve was measured. The 11C at position C-1 of acetate is metabolized in the first turn of the TCA cycle to the position 5 of glutamate (Figure 1A). Through the neurotransmission process, it is further transported to the position 5 of glutamine and the position 5 of neuronal glutamate. After the second turn of the TCA cycle, tracer from [1-11C]acetate (and also a part from glial [5-11C]glutamate) is transferred to glial [1-11C]glutamate and further to [1-11C]glutamine and neuronal glutamate through the neurotransmission cycle. Brain poster session: oxidative mechanisms S460 Journal of Cerebral Blood Flow & Metabolism (2009) 29, S455-S466 Results: The standard acetate two-pool PET model describes the system by a plasma pool and a tissue pool linked by rate constants. Experimental data are not fully described with only one tissue compartment (Figure 1B). The modified NMR model was fitted successfully to tissue time-activity curves from 6 single animals, by varying the glial mitochondrial fluxes and the neurotransmission flux Vnt. A glial composite rate constant Kgtg=Vgtg/[Ace]plasma was extracted. Considering an average acetate concentration in plasma of 1 mmol/g5 and the negligible additional amount injected, we found an average Vgtg = 0.08±0.02 (n = 6), in agreement with previous NMR measurements.1 The tissue time-activity curve is dominated by glial glutamate and later by glutamine (Figure 1B). Labeling of neuronal pools has a low influence, at least for the 20 mins of beta-probe acquisition. Based on the high diffusivity of CO2 across the blood-brain barrier; 11CO2 is not predominant in the total tissue curve, even if the brain CO2 pool is big compared with other metabolites, due to its strong dilution through unlabeled CO2 from neuronal metabolism and diffusion from plasma. Conclusion: The two-compartment model presented here is also able to fit data of positron emission experiments and to extract specific glial metabolic fluxes. 11C-labeled acetate presents an alternative for faster measurements of glial oxidative metabolism compared to NMR, potentially applicable to human PET imaging. However, to quantify the relative value of the TCA cycle flux compared to the transmitochondrial flux, the chemical sensitivity of NMR is required. PET and NMR are thus complementary.
Resumo:
A human in vivo toxicokinetic model was built to allow a better understanding of the toxicokinetics of folpet fungicide and its key ring biomarkers of exposure: phthalimide (PI), phthalamic acid (PAA) and phthalic acid (PA). Both PI and the sum of ring metabolites, expressed as PA equivalents (PAeq), may be used as biomarkers of exposure. The conceptual representation of the model was based on the analysis of the time course of these biomarkers in volunteers orally and dermally exposed to folpet. In the model, compartments were also used to represent the body burden of folpet and experimentally relevant PI, PAA and PA ring metabolites in blood and in key tissues as well as in excreta, hence urinary and feces. The time evolution of these biomarkers in each compartment of the model was then mathematically described by a system of coupled differential equations. The mathematical parameters of the model were then determined from best fits to the time courses of PI and PAeq in blood and urine of five volunteers administered orally 1 mg kg(-1) and dermally 10 mg kg(-1) of folpet. In the case of oral administration, the mean elimination half-life of PI from blood (through feces, urine or metabolism) was found to be 39.9 h as compared with 28.0 h for PAeq. In the case of a dermal application, mean elimination half-life of PI and PAeq was estimated to be 34.3 and 29.3 h, respectively. The average final fractions of administered dose recovered in urine as PI over the 0-96 h period were 0.030 and 0.002%, for oral and dermal exposure, respectively. Corresponding values for PAeq were 24.5 and 1.83%, respectively. Finally, the average clearance rate of PI from blood calculated from the oral and dermal data was 0.09 ± 0.03 and 0.13 ± 0.05 ml h(-1) while the volume of distribution was 4.30 ± 1.12 and 6.05 ± 2.22 l, respectively. It was not possible to obtain the corresponding values from PAeq data owing to the lack of blood time course data.
Resumo:
Spatial data analysis mapping and visualization is of great importance in various fields: environment, pollution, natural hazards and risks, epidemiology, spatial econometrics, etc. A basic task of spatial mapping is to make predictions based on some empirical data (measurements). A number of state-of-the-art methods can be used for the task: deterministic interpolations, methods of geostatistics: the family of kriging estimators (Deutsch and Journel, 1997), machine learning algorithms such as artificial neural networks (ANN) of different architectures, hybrid ANN-geostatistics models (Kanevski and Maignan, 2004; Kanevski et al., 1996), etc. All the methods mentioned above can be used for solving the problem of spatial data mapping. Environmental empirical data are always contaminated/corrupted by noise, and often with noise of unknown nature. That's one of the reasons why deterministic models can be inconsistent, since they treat the measurements as values of some unknown function that should be interpolated. Kriging estimators treat the measurements as the realization of some spatial randomn process. To obtain the estimation with kriging one has to model the spatial structure of the data: spatial correlation function or (semi-)variogram. This task can be complicated if there is not sufficient number of measurements and variogram is sensitive to outliers and extremes. ANN is a powerful tool, but it also suffers from the number of reasons. of a special type ? multiplayer perceptrons ? are often used as a detrending tool in hybrid (ANN+geostatistics) models (Kanevski and Maignank, 2004). Therefore, development and adaptation of the method that would be nonlinear and robust to noise in measurements, would deal with the small empirical datasets and which has solid mathematical background is of great importance. The present paper deals with such model, based on Statistical Learning Theory (SLT) - Support Vector Regression. SLT is a general mathematical framework devoted to the problem of estimation of the dependencies from empirical data (Hastie et al, 2004; Vapnik, 1998). SLT models for classification - Support Vector Machines - have shown good results on different machine learning tasks. The results of SVM classification of spatial data are also promising (Kanevski et al, 2002). The properties of SVM for regression - Support Vector Regression (SVR) are less studied. First results of the application of SVR for spatial mapping of physical quantities were obtained by the authorsin for mapping of medium porosity (Kanevski et al, 1999), and for mapping of radioactively contaminated territories (Kanevski and Canu, 2000). The present paper is devoted to further understanding of the properties of SVR model for spatial data analysis and mapping. Detailed description of the SVR theory can be found in (Cristianini and Shawe-Taylor, 2000; Smola, 1996) and basic equations for the nonlinear modeling are given in section 2. Section 3 discusses the application of SVR for spatial data mapping on the real case study - soil pollution by Cs137 radionuclide. Section 4 discusses the properties of the modelapplied to noised data or data with outliers.
Resumo:
Advancements in high-throughput technologies to measure increasingly complex biological phenomena at the genomic level are rapidly changing the face of biological research from the single-gene single-protein experimental approach to studying the behavior of a gene in the context of the entire genome (and proteome). This shift in research methodologies has resulted in a new field of network biology that deals with modeling cellular behavior in terms of network structures such as signaling pathways and gene regulatory networks. In these networks, different biological entities such as genes, proteins, and metabolites interact with each other, giving rise to a dynamical system. Even though there exists a mature field of dynamical systems theory to model such network structures, some technical challenges are unique to biology such as the inability to measure precise kinetic information on gene-gene or gene-protein interactions and the need to model increasingly large networks comprising thousands of nodes. These challenges have renewed interest in developing new computational techniques for modeling complex biological systems. This chapter presents a modeling framework based on Boolean algebra and finite-state machines that are reminiscent of the approach used for digital circuit synthesis and simulation in the field of very-large-scale integration (VLSI). The proposed formalism enables a common mathematical framework to develop computational techniques for modeling different aspects of the regulatory networks such as steady-state behavior, stochasticity, and gene perturbation experiments.
Resumo:
We propose a finite element approximation of a system of partial differential equations describing the coupling between the propagation of electrical potential and large deformations of the cardiac tissue. The underlying mathematical model is based on the active strain assumption, in which it is assumed that a multiplicative decomposition of the deformation tensor into a passive and active part holds, the latter carrying the information of the electrical potential propagation and anisotropy of the cardiac tissue into the equations of either incompressible or compressible nonlinear elasticity, governing the mechanical response of the biological material. In addition, by changing from an Eulerian to a Lagrangian configuration, the bidomain or monodomain equations modeling the evolution of the electrical propagation exhibit a nonlinear diffusion term. Piecewise quadratic finite elements are employed to approximate the displacements field, whereas for pressure, electrical potentials and ionic variables are approximated by piecewise linear elements. Various numerical tests performed with a parallel finite element code illustrate that the proposed model can capture some important features of the electromechanical coupling, and show that our numerical scheme is efficient and accurate.
Resumo:
Vegetation has a profound effect on flow and sediment transport processes in natural rivers, by increasing both skin friction and form drag. The increase in drag introduces a drag discontinuity between the in-canopy flow and the flow above, which leads to the development of an inflection point in the velocity profile, resembling a free shear layer. Therefore, drag acts as the primary driver for the entire canopy system. Most current numerical hydraulic models which incorporate vegetation rely either on simple, static plant forms, or canopy-scaled drag terms. However, it is suggested that these are insufficient as vegetation canopies represent complex, dynamic, porous blockages within the flow, which are subject to spatially and temporally dynamic drag forces. Here we present a dynamic drag methodology within a CFD framework. Preliminary results for a benchmark cylinder case highlight the accuracy of the method, and suggest its applicability to more complex cases.
Resumo:
La présente thèse s'intitule "Développent et Application des Méthodologies Computationnelles pour la Modélisation Qualitative". Elle comprend tous les différents projets que j'ai entrepris en tant que doctorante. Plutôt qu'une mise en oeuvre systématique d'un cadre défini a priori, cette thèse devrait être considérée comme une exploration des méthodes qui peuvent nous aider à déduire le plan de processus regulatoires et de signalisation. Cette exploration a été mue par des questions biologiques concrètes, plutôt que par des investigations théoriques. Bien que tous les projets aient inclus des systèmes divergents (réseaux régulateurs de gènes du cycle cellulaire, réseaux de signalisation de cellules pulmonaires) ainsi que des organismes (levure à fission, levure bourgeonnante, rat, humain), nos objectifs étaient complémentaires et cohérents. Le projet principal de la thèse est la modélisation du réseau de l'initiation de septation (SIN) du S.pombe. La cytokinèse dans la levure à fission est contrôlée par le SIN, un réseau signalant de protéines kinases qui utilise le corps à pôle-fuseau comme échafaudage. Afin de décrire le comportement qualitatif du système et prédire des comportements mutants inconnus, nous avons décidé d'adopter l'approche de la modélisation booléenne. Dans cette thèse, nous présentons la construction d'un modèle booléen étendu du SIN, comprenant la plupart des composantes et des régulateurs du SIN en tant que noeuds individuels et testable expérimentalement. Ce modèle utilise des niveaux d'activité du CDK comme noeuds de contrôle pour la simulation d'évènements du SIN à différents stades du cycle cellulaire. Ce modèle a été optimisé en utilisant des expériences d'un seul "knock-out" avec des effets phénotypiques connus comme set d'entraînement. Il a permis de prédire correctement un set d'évaluation de "knock-out" doubles. De plus, le modèle a fait des prédictions in silico qui ont été validées in vivo, permettant d'obtenir de nouvelles idées de la régulation et l'organisation hiérarchique du SIN. Un autre projet concernant le cycle cellulaire qui fait partie de cette thèse a été la construction d'un modèle qualitatif et minimal de la réciprocité des cyclines dans la S.cerevisiae. Les protéines Clb dans la levure bourgeonnante présentent une activation et une dégradation caractéristique et séquentielle durant le cycle cellulaire, qu'on appelle communément les vagues des Clbs. Cet évènement est coordonné avec la courbe d'activation inverse du Sic1, qui a un rôle inhibitoire dans le système. Pour l'identification des modèles qualitatifs minimaux qui peuvent expliquer ce phénomène, nous avons sélectionné des expériences bien définies et construit tous les modèles minimaux possibles qui, une fois simulés, reproduisent les résultats attendus. Les modèles ont été filtrés en utilisant des simulations ODE qualitatives et standardisées; seules celles qui reproduisaient le phénotype des vagues ont été gardées. L'ensemble des modèles minimaux peut être utilisé pour suggérer des relations regulatoires entre les molécules participant qui peuvent ensuite être testées expérimentalement. Enfin, durant mon doctorat, j'ai participé au SBV Improver Challenge. Le but était de déduire des réseaux spécifiques à des espèces (humain et rat) en utilisant des données de phosphoprotéines, d'expressions des gènes et des cytokines, ainsi qu'un réseau de référence, qui était mis à disposition comme donnée préalable. Notre solution pour ce concours a pris la troisième place. L'approche utilisée est expliquée en détail dans le dernier chapitre de la thèse. -- The present dissertation is entitled "Development and Application of Computational Methodologies in Qualitative Modeling". It encompasses the diverse projects that were undertaken during my time as a PhD student. Instead of a systematic implementation of a framework defined a priori, this thesis should be considered as an exploration of the methods that can help us infer the blueprint of regulatory and signaling processes. This exploration was driven by concrete biological questions, rather than theoretical investigation. Even though the projects involved divergent systems (gene regulatory networks of cell cycle, signaling networks in lung cells), as well as organisms (fission yeast, budding yeast, rat, human), our goals were complementary and coherent. The main project of the thesis is the modeling of the Septation Initiation Network (SIN) in S.pombe. Cytokinesis in fission yeast is controlled by the SIN, a protein kinase signaling network that uses the spindle pole body as scaffold. In order to describe the qualitative behavior of the system and predict unknown mutant behaviors we decided to adopt a Boolean modeling approach. In this thesis, we report the construction of an extended, Boolean model of the SIN, comprising most SIN components and regulators as individual, experimentally testable nodes. The model uses CDK activity levels as control nodes for the simulation of SIN related events in different stages of the cell cycle. The model was optimized using single knock-out experiments of known phenotypic effect as a training set, and was able to correctly predict a double knock-out test set. Moreover, the model has made in silico predictions that have been validated in vivo, providing new insights into the regulation and hierarchical organization of the SIN. Another cell cycle related project that is part of this thesis was to create a qualitative, minimal model of cyclin interplay in S.cerevisiae. CLB proteins in budding yeast present a characteristic, sequential activation and decay during the cell cycle, commonly referred to as Clb waves. This event is coordinated with the inverse activation curve of Sic1, which has an inhibitory role in the system. To generate minimal qualitative models that can explain this phenomenon, we selected well-defined experiments and constructed all possible minimal models that, when simulated, reproduce the expected results. The models were filtered using standardized qualitative ODE simulations; only the ones reproducing the wave-like phenotype were kept. The set of minimal models can be used to suggest regulatory relations among the participating molecules, which will subsequently be tested experimentally. Finally, during my PhD I participated in the SBV Improver Challenge. The goal was to infer species-specific (human and rat) networks, using phosphoprotein, gene expression and cytokine data and a reference network provided as prior knowledge. Our solution to the challenge was selected as in the final chapter of the thesis.
Resumo:
Approximate models (proxies) can be employed to reduce the computational costs of estimating uncertainty. The price to pay is that the approximations introduced by the proxy model can lead to a biased estimation. To avoid this problem and ensure a reliable uncertainty quantification, we propose to combine functional data analysis and machine learning to build error models that allow us to obtain an accurate prediction of the exact response without solving the exact model for all realizations. We build the relationship between proxy and exact model on a learning set of geostatistical realizations for which both exact and approximate solvers are run. Functional principal components analysis (FPCA) is used to investigate the variability in the two sets of curves and reduce the dimensionality of the problem while maximizing the retained information. Once obtained, the error model can be used to predict the exact response of any realization on the basis of the sole proxy response. This methodology is purpose-oriented as the error model is constructed directly for the quantity of interest, rather than for the state of the system. Also, the dimensionality reduction performed by FPCA allows a diagnostic of the quality of the error model to assess the informativeness of the learning set and the fidelity of the proxy to the exact model. The possibility of obtaining a prediction of the exact response for any newly generated realization suggests that the methodology can be effectively used beyond the context of uncertainty quantification, in particular for Bayesian inference and optimization.
Resumo:
Children who sustain a prenatal or perinatal brain injury in the form of a stroke develop remarkably normal cognitive functions in certain areas, with a particular strength in language skills. A dominant explanation for this is that brain regions from the contralesional hemisphere "take over" their functions, whereas the damaged areas and other ipsilesional regions play much less of a role. However, it is difficult to tease apart whether changes in neural activity after early brain injury are due to damage caused by the lesion or by processes related to postinjury reorganization. We sought to differentiate between these two causes by investigating the functional connectivity (FC) of brain areas during the resting state in human children with early brain injury using a computational model. We simulated a large-scale network consisting of realistic models of local brain areas coupled through anatomical connectivity information of healthy and injured participants. We then compared the resulting simulated FC values of healthy and injured participants with the empirical ones. We found that the empirical connectivity values, especially of the damaged areas, correlated better with simulated values of a healthy brain than those of an injured brain. This result indicates that the structural damage caused by an early brain injury is unlikely to have an adverse and sustained impact on the functional connections, albeit during the resting state, of damaged areas. Therefore, these areas could continue to play a role in the development of near-normal function in certain domains such as language in these children.
Resumo:
Directional cell growth requires that cells read and interpret shallow chemical gradients, but how the gradient directional information is identified remains elusive. We use single-cell analysis and mathematical modeling to define the cellular gradient decoding network in yeast. Our results demonstrate that the spatial information of the gradient signal is read locally within the polarity site complex using double-positive feedback between the GTPase Cdc42 and trafficking of the receptor Ste2. Spatial decoding critically depends on low Cdc42 activity, which is maintained by the MAPK Fus3 through sequestration of the Cdc42 activator Cdc24. Deregulated Cdc42 or Ste2 trafficking prevents gradient decoding and leads to mis-oriented growth. Our work discovers how a conserved set of components assembles a network integrating signal intensity and directionality to decode the spatial information contained in chemical gradients.