51 resultados para Nonlinear simulations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functionally relevant large scale brain dynamics operates within the framework imposed by anatomical connectivity and time delays due to finite transmission speeds. To gain insight on the reliability and comparability of large scale brain network simulations, we investigate the effects of variations in the anatomical connectivity. Two different sets of detailed global connectivity structures are explored, the first extracted from the CoCoMac database and rescaled to the spatial extent of the human brain, the second derived from white-matter tractography applied to diffusion spectrum imaging (DSI) for a human subject. We use the combination of graph theoretical measures of the connection matrices and numerical simulations to explicate the importance of both connectivity strength and delays in shaping dynamic behaviour. Our results demonstrate that the brain dynamics derived from the CoCoMac database are more complex and biologically more realistic than the one based on the DSI database. We propose that the reason for this difference is the absence of directed weights in the DSI connectivity matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An epidemic model is formulated by a reactionâeuro"diffusion system where the spatial pattern formation is driven by cross-diffusion. The reaction terms describe the local dynamics of susceptible and infected species, whereas the diffusion terms account for the spatial distribution dynamics. For both self-diffusion and cross-diffusion, nonlinear constitutive assumptions are suggested. To simulate the pattern formation two finite volume formulations are proposed, which employ a conservative and a non-conservative discretization, respectively. An efficient simulation is obtained by a fully adaptive multiresolution strategy. Numerical examples illustrate the impact of the cross-diffusion on the pattern formation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The configuration space available to randomly cyclized polymers is divided into subspaces accessible to individual knot types. A phantom chain utilized in numerical simulations of polymers can explore all subspaces, whereas a real closed chain forming a figure-of-eight knot, for example, is confined to a subspace corresponding to this knot type only. One can conceptually compare the assembly of configuration spaces of various knot types to a complex foam where individual cells delimit the configuration space available to a given knot type. Neighboring cells in the foam harbor knots that can be converted into each other by just one intersegmental passage. Such a segment-segment passage occurring at the level of knotted configurations corresponds to a passage through the interface between neighboring cells in the foamy knot space. Using a DNA topoisomerase-inspired simulation approach we characterize here the effective interface area between neighboring knot spaces as well as the surface-to-volume ratio of individual knot spaces. These results provide a reference system required for better understanding mechanisms of action of various DNA topoisomerases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Neo-Darwinism, variation and natural selection are the two evolutionary mechanisms which propel biological evolution. Our previous article presented a histogram model [1] consisting in populations of individuals whose number changed under the influence of variation and/or fitness, the total population remaining constant. Individuals are classified into bins, and the content of each bin is calculated generation after generation by an Excel spreadsheet. Here, we apply the histogram model to a stable population with fitness F(1)=1.00 in which one or two fitter mutants emerge. In a first scenario, a single mutant emerged in the population whose fitness was greater than 1.00. The simulations ended when the original population was reduced to a single individual. The histogram model was validated by excellent agreement between its predictions and those of a classical continuous function (Eqn. 1) which predicts the number of generations needed for a favorable mutation to spread throughout a population. But in contrast to Eqn. 1, our histogram model is adaptable to more complex scenarios, as demonstrated here. In the second and third scenarios, the original population was present at time zero together with two mutants which differed from the original population by two higher and distinct fitness values. In the fourth scenario, the large original population was present at time zero together with one fitter mutant. After a number of generations, when the mutant offspring had multiplied, a second mutant was introduced whose fitness was even greater. The histogram model also allows Shannon entropy (SE) to be monitored continuously as the information content of the total population decreases or increases. The results of these simulations illustrate, in a graphically didactic manner, the influence of natural selection, operating through relative fitness, in the emergence and dominance of a fitter mutant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gel electrophoresis can be used to separate nicked circular DNA molecules of equal length but forming different knot types. At low electric fields, complex knots drift faster than simpler knots. However, at high electric field the opposite is the case and simpler knots migrate faster than more complex knots. Using Monte Carlo simulations we investigate the reasons of this reversal of relative order of electrophoretic mobility of DNA molecules forming different knot types. We observe that at high electric fields the simulated knotted molecules tend to hang over the gel fibres and require passing over a substantial energy barrier to slip over the impeding gel fibre. At low electric field the interactions of drifting molecules with the gel fibres are weak and there are no significant energy barriers that oppose the detachment of knotted molecules from transverse gel fibres.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Neo-Darwinism, variation and natural selection are the two evolutionary mechanisms which propel biological evolution. Our previous reports presented a histogram model to simulate the evolution of populations of individuals classified into bins according to an unspecified, quantifiable phenotypic character, and whose number in each bin changed generation after generation under the influence of fitness, while the total population was maintained constant. The histogram model also allowed Shannon entropy (SE) to be monitored continuously as the information content of the total population decreased or increased. Here, a simple Perl (Practical Extraction and Reporting Language) application was developed to carry out these computations, with the critical feature of an added random factor in the percent of individuals whose offspring moved to a vicinal bin. The results of the simulations demonstrate that the random factor mimicking variation increased considerably the range of values covered by Shannon entropy, especially when the percentage of changed offspring was high. This increase in information content is interpreted as facilitated adaptability of the population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The method of instrumental variable (referred to as Mendelian randomization when the instrument is a genetic variant) has been initially developed to infer on a causal effect of a risk factor on some outcome of interest in a linear model. Adapting this method to nonlinear models, however, is known to be problematic. In this paper, we consider the simple case when the genetic instrument, the risk factor, and the outcome are all binary. We compare via simulations the usual two-stages estimate of a causal odds-ratio and its adjusted version with a recently proposed estimate in the context of a clinical trial with noncompliance. In contrast to the former two, we confirm that the latter is (under some conditions) a valid estimate of a causal odds-ratio defined in the subpopulation of compliers, and we propose its use in the context of Mendelian randomization. By analogy with a clinical trial with noncompliance, compliers are those individuals for whom the presence/absence of the risk factor X is determined by the presence/absence of the genetic variant Z (i.e., for whom we would observe X = Z whatever the alleles randomly received at conception). We also recall and illustrate the huge variability of instrumental variable estimates when the instrument is weak (i.e., with a low percentage of compliers, as is typically the case with genetic instruments for which this proportion is frequently smaller than 10%) where the inter-quartile range of our simulated estimates was up to 18 times higher compared to a conventional (e.g., intention-to-treat) approach. We thus conclude that the need to find stronger instruments is probably as important as the need to develop a methodology allowing to consistently estimate a causal odds-ratio.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the regional scale represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed a downscaling procedure based on a non-linear Bayesian sequential simulation approach. The basic objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity, which is available throughout the model space. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariate kernel density function. This method is then applied to the stochastic integration of low-resolution, re- gional-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities. Finally, the overall viability of this downscaling approach is tested and verified by performing and comparing flow and transport simulation through the original and the downscaled hydraulic conductivity fields. Our results indicate that the proposed procedure does indeed allow for obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reliable and objective assessment of chronic disease state has been and still is a very significant challenge in clinical medicine. An essential feature of human behavior related to the health status, the functional capacity, and the quality of life is the physical activity during daily life. A common way to assess physical activity is to measure the quantity of body movement. Since human activity is controlled by various factors both extrinsic and intrinsic to the body, quantitative parameters only provide a partial assessment and do not allow for a clear distinction between normal and abnormal activity. In this paper, we propose a methodology for the analysis of human activity pattern based on the definition of different physical activity time series with the appropriate analysis methods. The temporal pattern of postures, movements, and transitions between postures was quantified using fractal analysis and symbolic dynamics statistics. The derived nonlinear metrics were able to discriminate patterns of daily activity generated from healthy and chronic pain states.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rhythmic activity plays a central role in neural computations and brain functions ranging from homeostasis to attention, as well as in neurological and neuropsychiatric disorders. Despite this pervasiveness, little is known about the mechanisms whereby the frequency and power of oscillatory activity are modulated, and how they reflect the inputs received by neurons. Numerous studies have reported input-dependent fluctuations in peak frequency and power (as well as couplings across these features). However, it remains unresolved what mediates these spectral shifts among neural populations. Extending previous findings regarding stochastic nonlinear systems and experimental observations, we provide analytical insights regarding oscillatory responses of neural populations to stimulation from either endogenous or exogenous origins. Using a deceptively simple yet sparse and randomly connected network of neurons, we show how spiking inputs can reliably modulate the peak frequency and power expressed by synchronous neural populations without any changes in circuitry. Our results reveal that a generic, non-nonlinear and input-induced mechanism can robustly mediate these spectral fluctuations, and thus provide a framework in which inputs to the neurons bidirectionally regulate both the frequency and power expressed by synchronous populations. Theoretical and computational analysis of the ensuing spectral fluctuations was found to reflect the underlying dynamics of the input stimuli driving the neurons. Our results provide insights regarding a generic mechanism supporting spectral transitions observed across cortical networks and spanning multiple frequency bands.