143 resultados para Multiscale stochastic modelling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. Landscape modification is often considered the principal cause of population decline in many bat species. Thus, schemes for bat conservation rely heavily on knowledge about species-landscape relationships. So far, however, few studies have quantified the possible influence of landscape structure on large-scale spatial patterns in bat communities. 2. This study presents quantitative models that use landscape structure to predict (i) spatial patterns in overall community composition and (ii) individual species' distributions through canonical correspondence analysis and generalized linear models, respectively. A geographical information system (GIS) was then used to draw up maps of (i) overall community patterns and (ii) distribution of potential species' habitats. These models relied on field data from the Swiss Jura mountains. 3. Fight descriptors of landscape structure accounted for 30% of the variation in bat community composition. For some species, more than 60% of the variance in distribution could be explained by landscape structure. Elevation, forest or woodland cover, lakes and suburbs, were the most frequent predictors. 4. This study shows that community composition in bats is related to landscape structure through species-specific relationships to resources. Due to their nocturnal activities and the difficulties of remote identification, a comprehensive bat census is rarely possible, and we suggest that predictive modelling of the type described here provides an indispensable conservation tool.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we present and apply a new three-dimensional model for the prediction of canopy-flow and turbulence dynamics in open-channel flow. The approach uses a dynamic immersed boundary technique that is coupled in a sequentially staggered manner to a large eddy simulation. Two different biomechanical models are developed depending on whether the vegetation is dominated by bending or tensile forces. For bending plants, a model structured on the Euler-Bernoulli beam equation has been developed, whilst for tensile plants, an N-pendula model has been developed. Validation against flume data shows good agreement and demonstrates that for a given stem density, the models are able to simulate the extraction of energy from the mean flow at the stem-scale which leads to the drag discontinuity and associated mixing layer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel spatiotemporal-adaptive Multiscale Finite Volume (MsFV) method, which is based on the natural idea that the global coarse-scale problem has longer characteristic time than the local fine-scale problems. As a consequence, the global problem can be solved with larger time steps than the local problems. In contrast to the pressure-transport splitting usually employed in the standard MsFV approach, we propose to start directly with a local-global splitting that allows to locally retain the original degree of coupling. This is crucial for highly non-linear systems or in the presence of physical instabilities. To obtain an accurate and efficient algorithm, we devise new adaptive criteria for global update that are based on changes of coarse-scale quantities rather than on fine-scale quantities, as it is routinely done before in the adaptive MsFV method. By means of a complexity analysis we show that the adaptive approach gives a noticeable speed-up with respect to the standard MsFV algorithm. In particular, it is efficient in case of large upscaling factors, which is important for multiphysics problems. Based on the observation that local time stepping acts as a smoother, we devise a self-correcting algorithm which incorporates the information from previous times to improve the quality of the multiscale approximation. We present results of multiphase flow simulations both for Darcy-scale and multiphysics (hybrid) problems, in which a local pore-scale description is combined with a global Darcy-like description. The novel spatiotemporal-adaptive multiscale method based on the local-global splitting is not limited to porous media flow problems, but it can be extended to any system described by a set of conservation equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVES: Darunavir is a protease inhibitor that is administered with low-dose ritonavir to enhance its bioavailability. It is prescribed at standard dosage regimens of 600/100 mg twice daily in treatment-experienced patients and 800/100 mg once daily in naive patients. A population pharmacokinetic approach was used to characterize the pharmacokinetics of both drugs and their interaction in a cohort of unselected patients and to compare darunavir exposure expected under alternative dosage regimens. METHODS: The study population included 105 HIV-infected individuals who provided darunavir and ritonavir plasma concentrations. Firstly, a population pharmacokinetic analysis for darunavir and ritonavir was conducted, with inclusion of patients' demographic, clinical and genetic characteristics as potential covariates (NONMEM(®)). Then, the interaction between darunavir and ritonavir was studied while incorporating levels of both drugs into different inhibitory models. Finally, model-based simulations were performed to compare trough concentrations (Cmin) between the recommended dosage regimen and alternative combinations of darunavir and ritonavir. RESULTS: A one-compartment model with first-order absorption adequately characterized darunavir and ritonavir pharmacokinetics. The between-subject variability in both compounds was important [coefficient of variation (CV%) 34% and 47% for darunavir and ritonavir clearance, respectively]. Lopinavir and ritonavir exposure (AUC) affected darunavir clearance, while body weight and darunavir AUC influenced ritonavir elimination. None of the tested genetic variants showed any influence on darunavir or ritonavir pharmacokinetics. The simulations predicted darunavir Cmin much higher than the IC50 thresholds for wild-type and protease inhibitor-resistant HIV-1 strains (55 and 550 ng/mL, respectively) under standard dosing in >98% of experienced and naive patients. Alternative regimens of darunavir/ritonavir 1200/100 or 1200/200 mg once daily also had predicted adequate Cmin (>550 ng/mL) in 84% and 93% of patients, respectively. Reduction of darunavir/ritonavir dosage to 600/50 mg twice daily led to a 23% reduction in average Cmin, still with only 3.8% of patients having concentrations below the IC50 for resistant strains. CONCLUSIONS: The important variability in darunavir and ritonavir pharmacokinetics is poorly explained by clinical covariates and genetic influences. In experienced patients, treatment simplification strategies guided by drug level measurements and adherence monitoring could be proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel hybrid (or multiphysics) algorithm, which couples pore-scale and Darcy descriptions of two-phase flow in porous media. The flow at the pore-scale is described by the Navier?Stokes equations, and the Volume of Fluid (VOF) method is used to model the evolution of the fluid?fluid interface. An extension of the Multiscale Finite Volume (MsFV) method is employed to construct the Darcy-scale problem. First, a set of local interpolators for pressure and velocity is constructed by solving the Navier?Stokes equations; then, a coarse mass-conservation problem is constructed by averaging the pore-scale velocity over the cells of a coarse grid, which act as control volumes; finally, a conservative pore-scale velocity field is reconstructed and used to advect the fluid?fluid interface. The method relies on the localization assumptions used to compute the interpolators (which are quite straightforward extensions of the standard MsFV) and on the postulate that the coarse-scale fluxes are proportional to the coarse-pressure differences. By numerical simulations of two-phase problems, we demonstrate that these assumptions provide hybrid solutions that are in good agreement with reference pore-scale solutions and are able to model the transition from stable to unstable flow regimes. Our hybrid method can naturally take advantage of several adaptive strategies and allows considering pore-scale fluxes only in some regions, while Darcy fluxes are used in the rest of the domain. Moreover, since the method relies on the assumption that the relationship between coarse-scale fluxes and pressure differences is local, it can be used as a numerical tool to investigate the limits of validity of Darcy's law and to understand the link between pore-scale quantities and their corresponding Darcy-scale variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rapid response to: Ortegón M, Lim S, Chisholm D, Mendis S. Cost effectiveness of strategies to combat cardiovascular disease, diabetes, and tobacco use in sub-Saharan Africa and South East Asia: mathematical modelling study. BMJ. 2012 Mar 2;344:e607. doi: 10.1136/bmj.e607. PMID: 22389337.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents an approach for mapping of precipitation data. The main goal is to perform spatial predictions and simulations of precipitation fields using geostatistical methods (ordinary kriging, kriging with external drift) as well as machine learning algorithms (neural networks). More practically, the objective is to reproduce simultaneously both the spatial patterns and the extreme values. This objective is best reached by models integrating geostatistics and machine learning algorithms. To demonstrate how such models work, two case studies have been considered: first, a 2-day accumulation of heavy precipitation and second, a 6-day accumulation of extreme orographic precipitation. The first example is used to compare the performance of two optimization algorithms (conjugate gradients and Levenberg-Marquardt) of a neural network for the reproduction of extreme values. Hybrid models, which combine geostatistical and machine learning algorithms, are also treated in this context. The second dataset is used to analyze the contribution of radar Doppler imagery when used as external drift or as input in the models (kriging with external drift and neural networks). Model assessment is carried out by comparing independent validation errors as well as analyzing data patterns.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Protecting native biodiversity against alien invasive species requires powerful methods to anticipate these invasions and to protect native species assumed to be at risk. Here, we describe how species distribution models (SDMs) can be used to identify areas predicted as suitable for rare native species and also predicted as highly susceptible to invasion by alien species, at present and under future climate and land-use scenarios. To assess the condition and dynamics of such conflicts, we developed a combined predictive modelling (CPM) approach, which predicts species distributions by combining two SDMs fitted using subsets of predictors classified as acting at either regional or local scales. We illustrate the CPM approach for an alien invader and a rare species associated to similar habitats in northwest Portugal. Combined models predict a wider variety of potential species responses, providing more informative projections of species distributions and future dynamics than traditional, non-combined models. They also provide more informative insight regarding current and future rare-invasive conflict areas. For our studied species, conflict areas of highest conservation relevance are predicted to decrease over the next decade, supporting previous reports that some invasive species may contract their geographic range and impact due to climate change. More generally, our results highlight the more informative character of the combined approach to address practical issues in conservation and management programs, especially those aimed at mitigating the impact of invasive plants, land-use and climate changes in sensitive regions

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Altitudinal tree lines are mainly constrained by temperature, but can also be influenced by factors such as human activity, particularly in the European Alps, where centuries of agricultural use have affected the tree-line. Over the last decades this trend has been reversed due to changing agricultural practices and land-abandonment. We aimed to combine a statistical land-abandonment model with a forest dynamics model, to take into account the combined effects of climate and human land-use on the Alpine tree-line in Switzerland. Land-abandonment probability was expressed by a logistic regression function of degree-day sum, distance from forest edge, soil stoniness, slope, proportion of employees in the secondary and tertiary sectors, proportion of commuters and proportion of full-time farms. This was implemented in the TreeMig spatio-temporal forest model. Distance from forest edge and degree-day sum vary through feed-back from the dynamics part of TreeMig and climate change scenarios, while the other variables remain constant for each grid cell over time. The new model, TreeMig-LAb, was tested on theoretical landscapes, where the variables in the land-abandonment model were varied one by one. This confirmed the strong influence of distance from forest and slope on the abandonment probability. Degree-day sum has a more complex role, with opposite influences on land-abandonment and forest growth. TreeMig-LAb was also applied to a case study area in the Upper Engadine (Swiss Alps), along with a model where abandonment probability was a constant. Two scenarios were used: natural succession only (100% probability) and a probability of abandonment based on past transition proportions in that area (2.1% per decade). The former showed new forest growing in all but the highest-altitude locations. The latter was more realistic as to numbers of newly forested cells, but their location was random and the resulting landscape heterogeneous. Using the logistic regression model gave results consistent with observed patterns of land-abandonment: existing forests expanded and gaps closed, leading to an increasingly homogeneous landscape.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Reliable quantification of the macromolecule signals in short echo-time H-1 MRS spectra is particularly important at high magnetic fields for an accurate quantification of metabolite concentrations (the neurochemical profile) due to effectively increased spectral resolution of the macromolecule components. The purpose of the present study was to assess two approaches of quantification, which take the contribution of macromolecules into account in the quantification step. H-1 spectra were acquired on a 14.1 T/26 cm horizontal scanner on five rats using the ultra-short echo-time SPECIAL (spin echo full intensity acquired localization) spectroscopy sequence. Metabolite concentrations were estimated using LCModel, combined with a simulated basis set of metabolites using published spectral parameters and either the spectrum of macromolecules measured in vivo, using an inversion recovery technique, or baseline simulated by the built-in spline function. The fitted spline function resulted in a smooth approximation of the in vivo macromolecules, but in accordance with previous studies using Subtract-QUEST could not reproduce completely all features of the in vivo spectrum of macromolecules at 14.1 T. As a consequence, the measured macromolecular 'baseline' led to a more accurate and reliable quantification at higher field strengths.