30 resultados para Multimedia Data Mining


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Résumé de la thèse L'évolution des systèmes policiers donne une place prépondérante à l'information et au renseignement. Cette transformation implique de développer et de maintenir un ensemble de processus permanent d'analyse de la criminalité, en particulier pour traiter des événements répétitifs ou graves. Dans une organisation aux ressources limitées, le temps consacré au recueil des données, à leur codification et intégration, diminue le temps disponible pour l'analyse et la diffusion de renseignements. Les phases de collecte et d'intégration restent néanmoins indispensables, l'analyse n'étant pas possible sur des données volumineuses n'ayant aucune structure. Jusqu'à présent, ces problématiques d'analyse ont été abordées par des approches essentiellement spécialisées (calculs de hot-sports, data mining, ...) ou dirigées par un seul axe (par exemple, les sciences comportementales). Cette recherche s'inscrit sous un angle différent, une démarche interdisciplinaire a été adoptée. L'augmentation continuelle de la quantité de données à analyser tend à diminuer la capacité d'analyse des informations à disposition. Un bon découpage (classification) des problèmes rencontrés permet de délimiter les analyses sur des données pertinentes. Ces classes sont essentielles pour structurer la mémoire du système d'analyse. Les statistiques policières de la criminalité devraient déjà avoir répondu à ces questions de découpage de la délinquance (classification juridique). Cette décomposition a été comparée aux besoins d'un système de suivi permanent dans la criminalité. La recherche confirme que nos efforts pour comprendre la nature et la répartition du crime se butent à un obstacle, à savoir que la définition juridique des formes de criminalité n'est pas adaptée à son analyse, à son étude. Depuis près de vingt ans, les corps de police de Suisse romande utilisent et développent un système de classification basé sur l'expérience policière (découpage par phénomène). Cette recherche propose d'interpréter ce système dans le cadre des approches situationnelles (approche théorique) et de le confronter aux données « statistiques » disponibles pour vérifier sa capacité à distinguer les formes de criminalité. La recherche se limite aux cambriolages d'habitations, un délit répétitif fréquent. La théorie des opportunités soutien qu'il faut réunir dans le temps et dans l'espace au minimum les trois facteurs suivants : un délinquant potentiel, une cible intéressante et l'absence de gardien capable de prévenir ou d'empêcher le passage à l'acte. Ainsi, le délit n'est possible que dans certaines circonstances, c'est-à-dire dans un contexte bien précis. Identifier ces contextes permet catégoriser la criminalité. Chaque cas est unique, mais un groupe de cas montre des similitudes. Par exemple, certaines conditions avec certains environnements attirent certains types de cambrioleurs. Deux hypothèses ont été testées. La première est que les cambriolages d'habitations ne se répartissent pas uniformément dans les classes formées par des « paramètres situationnels » ; la deuxième que des niches apparaissent en recoupant les différents paramètres et qu'elles correspondent à la classification mise en place par la coordination judiciaire vaudoise et le CICOP. La base de données vaudoise des cambriolages enregistrés entre 1997 et 2006 par la police a été utilisée (25'369 cas). Des situations spécifiques ont été mises en évidence, elles correspondent aux classes définies empiriquement. Dans une deuxième phase, le lien entre une situation spécifique et d'activité d'un auteur au sein d'une même situation a été vérifié. Les observations réalisées dans cette recherche indiquent que les auteurs de cambriolages sont actifs dans des niches. Plusieurs auteurs sériels ont commis des délits qui ne sont pas dans leur niche, mais le nombre de ces infractions est faible par rapport au nombre de cas commis dans la niche. Un système de classification qui correspond à des réalités criminelles permet de décomposer les événements et de mettre en place un système d'alerte et de suivi « intelligent ». Une nouvelle série dans un phénomène sera détectée par une augmentation du nombre de cas de ce phénomène, en particulier dans une région et à une période donnée. Cette nouvelle série, mélangée parmi l'ensemble des délits, ne serait pas forcément détectable, en particulier si elle se déplace. Finalement, la coopération entre les structures de renseignement criminel opérationnel en Suisse romande a été améliorée par le développement d'une plateforme d'information commune et le système de classification y a été entièrement intégré.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Somatic copy number aberrations (CNA) represent a mutation type encountered in the majority of cancer genomes. Here, we present the 2014 edition of arrayMap (http://www.arraymap.org), a publicly accessible collection of pre-processed oncogenomic array data sets and CNA profiles, representing a vast range of human malignancies. Since the initial release, we have enhanced this resource both in content and especially with regard to data mining support. The 2014 release of arrayMap contains more than 64,000 genomic array data sets, representing about 250 tumor diagnoses. Data sets included in arrayMap have been assembled from public repositories as well as additional resources, and integrated by applying custom processing pipelines. Online tools have been upgraded for a more flexible array data visualization, including options for processing user provided, non-public data sets. Data integration has been improved by mapping to multiple editions of the human reference genome, with the majority of the data now being available for the UCSC hg18 as well as GRCh37 versions. The large amount of tumor CNA data in arrayMap can be freely downloaded by users to promote data mining projects, and to explore special events such as chromothripsis-like genome patterns.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Imaging mass spectrometry (IMS) is an emergent and innovative approach for measuring the composition, abundance and regioselectivity of molecules within an investigated area of fixed dimension. Although providing unprecedented molecular information compared with conventional MS techniques, enhancement of protein signature by IMS is still necessary and challenging. This paper demonstrates the combination of conventional organic washes with an optimized aqueous-based buffer for tissue section preparation before matrix-assisted laser desorption/ionization (MALDI) IMS of proteins. Based on a 500 mM ammonium formate in water-acetonitrile (9:1; v/v, 0.1% trifluororacetic acid, 0.1% Triton) solution, this buffer wash has shown to significantly enhance protein signature by profiling and IMS (~fourfold) when used after organic washes (70% EtOH followed by 90% EtOH), improving the quality and number of ion images obtained from mouse kidney and a 14-day mouse fetus whole-body tissue sections, while maintaining a similar reproducibility with conventional tissue rinsing. Even if some protein losses were observed, the data mining has demonstrated that it was primarily low abundant signals and that the number of new peaks found is greater with the described procedure. The proposed buffer has thus demonstrated to be of high efficiency for tissue section preparation providing novel and complementary information for direct on-tissue MALDI analysis compared with solely conventional organic rinsing.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

One of the challenges of tumour immunology remains the identification of strongly immunogenic tumour antigens for vaccination. Reverse immunology, that is, the procedure to predict and identify immunogenic peptides from the sequence of a gene product of interest, has been postulated to be a particularly efficient, high-throughput approach for tumour antigen discovery. Over one decade after this concept was born, we discuss the reverse immunology approach in terms of costs and efficacy: data mining with bioinformatic algorithms, molecular methods to identify tumour-specific transcripts, prediction and determination of proteasomal cleavage sites, peptide-binding prediction to HLA molecules and experimental validation, assessment of the in vitro and in vivo immunogenic potential of selected peptide antigens, isolation of specific cytolytic T lymphocyte clones and final validation in functional assays of tumour cell recognition. We conclude that the overall low sensitivity and yield of every prediction step often requires a compensatory up-scaling of the initial number of candidate sequences to be screened, rendering reverse immunology an unexpectedly complex approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

For the last decade, high-resolution (HR)-MS has been associated with qualitative analyses while triple quadrupole MS has been associated with routine quantitative analyses. However, a shift of this paradigm is taking place: quantitative and qualitative analyses will be increasingly performed by HR-MS, and it will become the common 'language' for most mass spectrometrists. Most analyses will be performed by full-scan acquisitions recording 'all' ions entering the HR-MS with subsequent construction of narrow-width extracted-ion chromatograms. Ions will be available for absolute quantification, profiling and data mining. In parallel to quantification, metabotyping will be the next step in clinical LC-MS analyses because it should help in personalized medicine. This article is aimed to help analytical chemists who perform targeted quantitative acquisitions with triple quadrupole MS make the transition to quantitative and qualitative analyses using HR-MS. Guidelines for the acceptance criteria of mass accuracy and for the determination of mass extraction windows in quantitative analyses are proposed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Metabolite profiling is critical in many aspects of the life sciences, particularly natural product research. Obtaining precise information on the chemical composition of complex natural extracts (metabolomes) that are primarily obtained from plants or microorganisms is a challenging task that requires sophisticated, advanced analytical methods. In this respect, significant advances in hyphenated chromatographic techniques (LC-MS, GC-MS and LC-NMR in particular), as well as data mining and processing methods, have occurred over the last decade. Together, these tools, in combination with bioassay profiling methods, serve an important role in metabolomics for the purposes of both peak annotation and dereplication in natural product research. In this review, a survey of the techniques that are used for generic and comprehensive profiling of secondary metabolites in natural extracts is provided. The various approaches (chromatographic methods: LC-MS, GC-MS, and LC-NMR and direct spectroscopic methods: NMR and DIMS) are discussed with respect to their resolution and sensitivity for extract profiling. In addition the structural information that can be generated through these techniques or in combination, is compared in relation to the identification of metabolites in complex mixtures. Analytical strategies with applications to natural extracts and novel methods that have strong potential, regardless of how often they are used, are discussed with respect to their potential applications and future trends.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Many classifiers achieve high levels of accuracy but have limited applicability in real world situations because they do not lead to a greater understanding or insight into the^way features influence the classification. In areas such as health informatics a classifier that clearly identifies the influences on classification can be used to direct research and formulate interventions. This research investigates the practical applications of Automated Weighted Sum, (AWSum), a classifier that provides accuracy comparable to other techniques whilst providing insight into the data. This is achieved by calculating a weight for each feature value that represents its influence on the class value. The merits of this approach in classification and insight are evaluated on a Cystic Fibrosis and Diabetes datasets with positive results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Purpose:To describe a novel in silico method to gather and analyze data from high-throughput heterogeneous experimental procedures, i.e. gene and protein expression arrays. Methods:Each microarray is assigned to a database which handles common data (names, symbols, antibody codes, probe IDs, etc.). Links between informations are automatically generated from knowledge obtained in freely accessible databases (NCBI, Swissprot, etc). Requests can be made from any point of entry and the displayed result is fully customizable. Results:The initial database has been loaded with two sets of data: a first set of data originating from an Affymetrix-based retinal profiling performed in an RPE65 knock-out mouse model of Leber's congenital amaurosis. A second set of data generated from a Kinexus microarray experiment done on the retinas from the same mouse model has been added. Queries display wild type versus knock out expressions at several time points for both genes and proteins. Conclusions:This freely accessible database allows for easy consultation of data and facilitates data mining by integrating experimental data and biological pathways.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The induction of fungal metabolites by fungal co-cultures grown on solid media was explored using multi-well co-cultures in 2 cm diameter Petri dishes. Fungi were grown in 12-well plates to easily and rapidly obtain the large number of replicates necessary for employing metabolomic approaches. Fungal culture using such a format accelerated the production of metabolites by several weeks compared with using the large-format 9 cm Petri dishes. This strategy was applied to a co-culture of a Fusarium and an Aspergillus strain. The metabolite composition of the cultures was assessed using ultra-high pressure liquid chromatography coupled to electrospray ionisation and time-of-flight mass spectrometry, followed by automated data mining. The de novo production of metabolites was dramatically increased by nutriment reduction. A time-series study of the induction of the fungal metabolites of interest over nine days revealed that they exhibited various induction patterns. The concentrations of most of the de novo induced metabolites increased over time. However, interesting patterns were observed, such as with the presence of some compounds only at certain time points. This result indicates the complexity and dynamic nature of fungal metabolism. The large-scale production of the compounds of interest was verified by co-culture in 15 cm Petri dishes; most of the induced metabolites of interest (16/18) were found to be produced as effectively as on a small scale, although not in the same time frames. Large-scale production is a practical solution for the future production, identification and biological evaluation of these metabolites.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

ObjectiveCandidate genes for non-alcoholic fatty liver disease (NAFLD) identified by a bioinformatics approach were examined for variant associations to quantitative traits of NAFLD-related phenotypes.Research Design and MethodsBy integrating public database text mining, trans-organism protein-protein interaction transferal, and information on liver protein expression a protein-protein interaction network was constructed and from this a smaller isolated interactome was identified. Five genes from this interactome were selected for genetic analysis. Twenty-one tag single-nucleotide polymorphisms (SNPs) which captured all common variation in these genes were genotyped in 10,196 Danes, and analyzed for association with NAFLD-related quantitative traits, type 2 diabetes (T2D), central obesity, and WHO-defined metabolic syndrome (MetS).Results273 genes were included in the protein-protein interaction analysis and EHHADH, ECHS1, HADHA, HADHB, and ACADL were selected for further examination. A total of 10 nominal statistical significant associations (P<0.05) to quantitative metabolic traits were identified. Also, the case-control study showed associations between variation in the five genes and T2D, central obesity, and MetS, respectively. Bonferroni adjustments for multiple testing negated all associations.ConclusionsUsing a bioinformatics approach we identified five candidate genes for NAFLD. However, we failed to provide evidence of associations with major effects between SNPs in these five genes and NAFLD-related quantitative traits, T2D, central obesity, and MetS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Amplified Fragment Length Polymorphisms (AFLPs) are a cheap and efficient protocol for generating large sets of genetic markers. This technique has become increasingly used during the last decade in various fields of biology, including population genomics, phylogeography, and genome mapping. Here, we present RawGeno, an R library dedicated to the automated scoring of AFLPs (i.e., the coding of electropherogram signals into ready-to-use datasets). Our program includes a complete suite of tools for binning, editing, visualizing, and exporting results obtained from AFLP experiments. RawGeno can either be used with command lines and program analysis routines or through a user-friendly graphical user interface. We describe the whole RawGeno pipeline along with recommendations for (a) setting the analysis of electropherograms in combination with PeakScanner, a program freely distributed by Applied Biosystems; (b) performing quality checks; (c) defining bins and proceeding to scoring; (d) filtering nonoptimal bins; and (e) exporting results in different formats.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Advanced neuroinformatics tools are required for methods of connectome mapping, analysis, and visualization. The inherent multi-modality of connectome datasets poses new challenges for data organization, integration, and sharing. We have designed and implemented the Connectome Viewer Toolkit - a set of free and extensible open source neuroimaging tools written in Python. The key components of the toolkit are as follows: (1) The Connectome File Format is an XML-based container format to standardize multi-modal data integration and structured metadata annotation. (2) The Connectome File Format Library enables management and sharing of connectome files. (3) The Connectome Viewer is an integrated research and development environment for visualization and analysis of multi-modal connectome data. The Connectome Viewer's plugin architecture supports extensions with network analysis packages and an interactive scripting shell, to enable easy development and community contributions. Integration with tools from the scientific Python community allows the leveraging of numerous existing libraries for powerful connectome data mining, exploration, and comparison. We demonstrate the applicability of the Connectome Viewer Toolkit using Diffusion MRI datasets processed by the Connectome Mapper. The Connectome Viewer Toolkit is available from http://www.cmtk.org/

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Past and current climate change has already induced drastic biological changes. We need projections of how future climate change will further impact biological systems. Modeling is one approach to forecast future ecological impacts, but requires data for model parameterization. As collecting new data is costly, an alternative is to use the increasingly available georeferenced species occurrence and natural history databases. Here, we illustrate the use of such databases to assess climate change impacts on mountain flora. We show that these data can be used effectively to derive dynamic impact scenarios, suggesting upward migration of many species and possible extinctions when no suitable habitat is available at higher elevations. Systematically georeferencing all existing natural history collections data in mountain regions could allow a larger assessment of climate change impact on mountain ecosystems in Europe and elsewhere.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Selective publication of studies, which is commonly called publication bias, is widely recognized. Over the years a new nomenclature for other types of bias related to non-publication or distortion related to the dissemination of research findings has been developed. However, several of these different biases are often still summarized by the term 'publication bias'. METHODS/DESIGN: As part of the OPEN Project (To Overcome failure to Publish nEgative fiNdings) we will conduct a systematic review with the following objectives:- To systematically review highly cited articles that focus on non-publication of studies and to present the various definitions of biases related to the dissemination of research findings contained in the articles identified.- To develop and discuss a new framework on nomenclature of various aspects of distortion in the dissemination process that leads to public availability of research findings in an international group of experts in the context of the OPEN Project.We will systematically search Web of Knowledge for highly cited articles that provide a definition of biases related to the dissemination of research findings. A specifically designed data extraction form will be developed and pilot-tested. Working in teams of two, we will independently extract relevant information from each eligible article.For the development of a new framework we will construct an initial table listing different levels and different hazards en route to making research findings public. An international group of experts will iteratively review the table and reflect on its content until no new insights emerge and consensus has been reached. DISCUSSION: Results are expected to be publicly available in mid-2013. This systematic review together with the results of other systematic reviews of the OPEN project will serve as a basis for the development of future policies and guidelines regarding the assessment and prevention of publication bias.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The extension of traditional data mining methods to time series has been effectively applied to a wide range of domains such as finance, econometrics, biology, security, and medicine. Many existing mining methods deal with the task of change points detection, but very few provide a flexible approach. Querying specific change points with linguistic variables is particularly useful in crime analysis, where intuitive, understandable, and appropriate detection of changes can significantly improve the allocation of resources for timely and concise operations. In this paper, we propose an on-line method for detecting and querying change points in crime-related time series with the use of a meaningful representation and a fuzzy inference system. Change points detection is based on a shape space representation, and linguistic terms describing geometric properties of the change points are used to express queries, offering the advantage of intuitiveness and flexibility. An empirical evaluation is first conducted on a crime data set to confirm the validity of the proposed method and then on a financial data set to test its general applicability. A comparison to a similar change-point detection algorithm and a sensitivity analysis are also conducted. Results show that the method is able to accurately detect change points at very low computational costs. More broadly, the detection of specific change points within time series of virtually any domain is made more intuitive and more understandable, even for experts not related to data mining.