350 resultados para Mouse Embryos
Resumo:
BACKGROUND: Notch signaling regulates multiple differentiation processes and cell fate decisions during both invertebrate and vertebrate development. Numb encodes an intracellular protein that was shown in Drosophila to antagonize Notch signaling at binary cell fate decisions of certain cell lineages. Although overexpression experiments suggested that Numb might also antagonize some Notch activity in vertebrates, the developmental processes in which Numb is involved remained elusive. RESULTS: We generated mice with a homozygous inactivation of Numb. These mice died before embryonic day E11.5, probably because of defects in angiogenic remodeling and placental dysfunction. Mutant embryos had an open anterior neural tube and impaired neuronal differentiation within the developing cranial central nervous system (CNS). In the developing spinal cord, the number of differentiated motoneurons was reduced. Within the peripheral nervous system (PNS), ganglia of cranial sensory neurons were formed. Trunk neural crest cells migrated and differentiated into sympathetic neurons. In contrast, a selective differentiation anomaly was observed in dorsal root ganglia, where neural crest--derived progenitor cells had migrated normally to form ganglionic structures, but failed to differentiate into sensory neurons. CONCLUSIONS: Mouse Numb is involved in multiple developmental processes and required for cell fate tuning in a variety of lineages. In the nervous system, Numb is required for the generation of a large subset of neuronal lineages. The restricted requirement of Numb during neural development in the mouse suggests that in some neuronal lineages, Notch signaling may be regulated independently of Numb.
Resumo:
Protein S (ProS) is an important negative regulator of blood coagulation. Its physiological importance is evident in purpura fulminans and other life-threatening thrombotic disorders typical of ProS deficient patients. Our previous characterization of ProS deficiency in mouse models has shown similarities with the human phenotypes: heterozygous ProS-deficient mice (Pros+/-) had increased thrombotic risk whereas homozygous deficiency in ProS (Pros-/-) was incompatible with life (Blood 2009; 114:2307-2314). In tissues, ProS exerts cellular functions by binding to and activating tyrosine kinase receptors of the Tyro3 family (TAM) on the cell surface.To extend the analysis of coagulation defects beyond the Pros-/- phenotype and add new insights into the sites of synthesis ProS and its action, we generated mice with inactivated ProS in hepatocytes (Proslox/loxAlbCre+) as well as in endothelial and hematopoietic cells (Proslox/loxTie2Cre+). Both models resulted in significant reduction of circulating ProS levels and in a remarkable increased thrombotic risk in vivo. In a model of tissue factor (TF)-induced venous thromboembolism (VTE), only 17% of Proslox/loxAlbCre+ mice (n=12) and only 13% of Proslox/loxTie2Cre+ mice (n=14) survived, compared with 86% of Proslox/lox mice (n=14; P<0.001).To mimic a severe acquired ProS deficiency, ProS gene was inactivated at the adult stage using the polyI:C-inducible Mx1-Cre system (Proslox/loxMx1Cre+). Ten days after polyI:C treatment, Proslox/loxMx1Cre+ mice developed disseminated intravascular coagulation with extensive lung and liver thrombosis.It is worth noting that no skin lesions compatible with purpura fulminans were observed in any of the above-described models of partial ProS deficiency. In order to shed light on the pathogenesis of purpura fulminans, we exposed the different ProS-deficient mice to warfarin (0.2 mg/day). We observed that Pros+/-, Proslox/loxAlbCre+ and Proslox/loxTie2Cre+ mice developed retiform purpura (characterized by erythematous and necrotic lesions of the genital region and extremities) and died after 3 to 5 days after the first warfarin administration.In human, ProS is also synthesized by megakaryocytes and hence stored at high concentrations in circulating platelets (pProS). The role of pProS has been investigated by generating megakaryocyte ProS-deficient model using the PF4 promoter as Cre driver (Proslox/loxPf4Cre+). In the TF-induced VTE model, Proslox/loxPf4Cre+ (n=15) mice showed a significant increased risk of thrombosis compared to Proslox/lox controls (n=14; survival rate 47% and 86%, respectively; P<0.05). Furthermore, preliminary results suggest survival to be associated with higher circulating ProS levels. In order to evaluate the potential role of pProS in thrombus formation, we investigated the thrombotic response to intravenous injection of collagen-epinephrine in vivo and platelet function in vitro. Both in vivo and in vitro experiments showed similar results between Proslox/loxPf4Cre+ and Proslox/lox, indicating that platelet reactivity was not influenced by the absence of pProS. These data suggest that pProS is delivered at the site of thrombosis to inhibit thrombin generation.We further investigated the ability of ProS to function as a ligand of TAM receptors, by using homozygous and heterozygous deficient mice for both the TAM ligands ProS and Gas6. Gas6-/-Pros-/- mice died in utero and showed comparable dramatic bleeding and thrombotic phenotype as described for Pros-/- embryos.In conclusion, like complete ProS deficiency, double deficiency in ProS and Gas6 was lethal, whereas partial ProS deficiency was not. Mice partially deficient in ProS displayed a prothrombotic phenotype, including those with only deficiency in pProS. Purpura fulminans did not occur spontaneously in mice with partial Pros deficiency but developed upon warfarin administration.Thus, the use of different mice models of ProS deficiency can be instrumental in the study of its highly variable thrombotic phenotype and in the investigation of additional roles of ProS in inflammation and autoimmunity through TAM signaling.
Resumo:
Résumé L'accident vasculaire cérébral sensoriel pur est un des syndromes lacunaires, dû à l'occlusion de petits vaisseaux cérébraux, souvent dans le cadre d'une lésion intéressant le noyau ventro-caudal du thalamus. Il produit un hémisyndrome sensitif pur, et parfois un syndrome douloureux se développe à distance de l'événement aigu. Afin d'étudier la récupération fonctionnelle dans le cortex somatosensoriel (SI) après une telle lésion dans le thalamus, un modèle de lésion excitotoxique a été développé dans le système somatosensoriel de la souris adulte, caractérisé par la présence de formations cytoarchitectoniques dans SI appelées "tonneaux". Chacun de ces tonneaux correspond à la représentation corticale d'une vibrisse du museau. L'activité métabolique a été mesurée dans SI à différents intervalles après la lésion, à l'aide de déoxyglucose marqué radioactivement. Dans les deux premiers jours suivant celle-ci, l'activité métabolique diminue de manière importante dans toutes les couches corticales, avec une atteinte plus marquée dans la couche IV, principale projection des axones thalamo-corticaux. Une récupération de l'activité métabolique se produit ensuite, d'autant plus marquée que le délai après la lésion est grand. Cette récupération s'observe dans toutes les couches coticales, les couches I et Vb récupérant plus rapidement que les couches II, III, IV, Va et VI. Cinq semaines après la lésion, l'absence des vibrisses correspondant à la partie déafférentée de SI diminue l'activité métabolique corticale de 32% et démontre l'activation par la périphérie de cette partie de l'écorce, malgré la perte des axones thalamo-corticaux provenant du noyau ventro-caudal. Des expériences de traçage rétrograde ont montré une augmentation des projections intracorticales sur la partie déafférentée de l'écorce, en particulier de longue distance, ainsi que des projections interhémisphériques, mais n'ont pas permis de mettre en évidence de nouvelle projection thalamique, indiquant une origine corticale à la récupération fonctionnelle observée. Abstract To study the degree and time course of the functional recovery in the somatosensory cortex (SI) after an excitotoxic lesion in the adult mouse thalamus, metabolic activity was determined in SI at various times points post lesion. Immediately after the lesion, metabolic activity in the thalamically deafferented part of SI was at its lowest value but increased progressively at subsequent time points. This was seen in all cortical layers, however, layers I and Vb recover more rapidly than layers II, III, IV, Va and VI. Removal of the mystacial whiskers corresponding to the deafferented area, 5 weeks after cortical recovery, produced a subsequent 32% drop in metabolic activity, demonstrating peripheral sensory activation of this part of the cortex. Tracing experiments revealed that the deafferented cortex did not receive a novel thalamic input, but cortico-cortical and contralateral barrel cortex projections to this area were reinforced. We conclude that the cortical functional recovery after a thalamic lesion is, at least partially, due to modified cortico-cortical and callosal projections to the deafferented cortical area.
Resumo:
Despite the common assumption that orthologs usually share the same function, there have been various reports of divergence between orthologs, even among species as close as mammals. The comparison of mouse and human is of special interest, because mouse is often used as a model organism to understand human biology. We review the literature on evidence for divergence between human and mouse orthologous genes, and discuss it in the context of biomedical research.
Resumo:
Eukaryotic cells generate energy in the form of ATP, through a network of mitochondrial complexes and electron carriers known as the oxidative phosphorylation system. In mammals, mitochondrial complex I (CI) is the largest component of this system, comprising 45 different subunits encoded by mitochondrial and nuclear DNA. Humans diagnosed with mutations in the gene NDUFS4, encoding a nuclear DNA-encoded subunit of CI (NADH dehydrogenase ubiquinone Fe-S protein 4), typically suffer from Leigh syndrome, a neurodegenerative disease with onset in infancy or early childhood. Mitochondria from NDUFS4 patients usually lack detectable NDUFS4 protein and show a CI stability/assembly defect. Here, we describe a recessive mouse phenotype caused by the insertion of a transposable element into Ndufs4, identified by a novel combined linkage and expression analysis. Designated Ndufs4(fky), the mutation leads to aberrant transcript splicing and absence of NDUFS4 protein in all tissues tested of homozygous mice. Physical and behavioral symptoms displayed by Ndufs4(fky/fky) mice include temporary fur loss, growth retardation, unsteady gait, and abnormal body posture when suspended by the tail. Analysis of CI in Ndufs4(fky/fky) mice using blue native PAGE revealed the presence of a faster migrating crippled complex. This crippled CI was shown to lack subunits of the "N assembly module", which contains the NADH binding site, but contained two assembly factors not present in intact CI. Metabolomic analysis of the blood by tandem mass spectrometry showed increased hydroxyacylcarnitine species, implying that the CI defect leads to an imbalanced NADH/NAD(+) ratio that inhibits mitochondrial fatty acid β-oxidation.
Resumo:
Acute and chronic respiratory failure is one of the major and potentially life-threatening features in individuals with myotonic dystrophy type 1 (DM1). Despite several clinical demonstrations showing respiratory problems in DM1 patients, the mechanisms are still not completely understood. This study was designed to investigate whether the DMSXL transgenic mouse model for DM1 exhibits respiratory disorders and, if so, to identify the pathological changes underlying these respiratory problems. Using pressure plethysmography, we assessed the breathing function in control mice and DMSXL mice generated after large expansions of the CTG repeat in successive generations of DM1 transgenic mice. Statistical analysis of breathing function measurements revealed a significant decrease in the most relevant respiratory parameters in DMSXL mice, indicating impaired respiratory function. Histological and morphometric analysis showed pathological changes in diaphragmatic muscle of DMSXL mice, characterized by an increase in the percentage of type I muscle fibers, the presence of central nuclei, partial denervation of end-plates (EPs) and a significant reduction in their size, shape complexity and density of acetylcholine receptors, all of which reflect a possible breakdown in communication between the diaphragmatic muscles fibers and the nerve terminals. Diaphragm muscle abnormalities were accompanied by an accumulation of mutant DMPK RNA foci in muscle fiber nuclei. Moreover, in DMSXL mice, the unmyelinated phrenic afferents are significantly lower. Also in these mice, significant neuronopathy was not detected in either cervical phrenic motor neurons or brainstem respiratory neurons. Because EPs are involved in the transmission of action potentials and the unmyelinated phrenic afferents exert a modulating influence on the respiratory drive, the pathological alterations affecting these structures might underlie the respiratory impairment detected in DMSXL mice. Understanding mechanisms of respiratory deficiency should guide pharmaceutical and clinical research towards better therapy for the respiratory deficits associated with DM1.
Resumo:
Retroviral transfer of T cell antigen receptor (TCR) genes selected by circumventing tolerance to broad tumor- and leukemia-associated antigens in human leukocyte antigen (HLA)-A*0201 (A2.1) transgenic (Tg) mice allows the therapeutic reprogramming of human T lymphocytes. Using a human CD8 x A2.1/Kb mouse derived TCR specific for natural peptide-A2.1 (pA2.1) complexes comprising residues 81-88 of the human homolog of the murine double-minute 2 oncoprotein, MDM2(81-88), we found that the heterodimeric CD8 alpha beta coreceptor, but not normally expressed homodimeric CD8 alpha alpha, is required for tetramer binding and functional redirection of TCR- transduced human T cells. CD8+T cells that received a humanized derivative of the MDM2 TCR bound pA2.1 tetramers only in the presence of an anti-human-CD8 anti-body and required more peptide than wild-type (WT) MDM2 TCR+T cells to mount equivalent cytotoxicity. They were, however, sufficiently effective in recognizing malignant targets including fresh leukemia cells. Most efficient expression of transduced TCR in human T lymphocytes was governed by mouse as compared to human constant (C) alphabeta domains, as demonstrated with partially humanized and murinized TCR of primary mouse and human origin, respectively. We further observed a reciprocal relationship between the level of Tg WT mouse relative to natural human TCR expression, resulting in T cells with decreased normal human cell surface TCR. In contrast, natural human TCR display remained unaffected after delivery of the humanized MDM2 TCR. These results provide important insights into the molecular basis of TCR gene therapy of malignant disease.
Resumo:
A large fraction of genome variation between individuals is comprised of submicroscopic copy number variation of genomic DNA segments. We assessed the relative contribution of structural changes and gene dosage alterations on phenotypic outcomes with mouse models of Smith-Magenis and Potocki-Lupski syndromes. We phenotyped mice with 1n (Deletion/+), 2n (+/+), 3n (Duplication/+), and balanced 2n compound heterozygous (Deletion/Duplication) copies of the same region. Parallel to the observations made in humans, such variation in gene copy number was sufficient to generate phenotypic consequences: in a number of cases diametrically opposing phenotypes were associated with gain versus loss of gene content. Surprisingly, some neurobehavioral traits were not rescued by restoration of the normal gene copy number. Transcriptome profiling showed that a highly significant propensity of transcriptional changes map to the engineered interval in the five assessed tissues. A statistically significant overrepresentation of the genes mapping to the entire length of the engineered chromosome was also found in the top-ranked differentially expressed genes in the mice containing rearranged chromosomes, regardless of the nature of the rearrangement, an observation robust across different cell lineages of the central nervous system. Our data indicate that a structural change at a given position of the human genome may affect not only locus and adjacent gene expression but also "genome regulation." Furthermore, structural change can cause the same perturbation in particular pathways regardless of gene dosage. Thus, the presence of a genomic structural change, as well as gene dosage imbalance, contributes to the ultimate phenotype.
Resumo:
Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3 (SCA3), is a fatal, dominant neurodegenerative disorder caused by the polyglutamine-expanded protein ataxin-3. Clinical manifestations include cerebellar ataxia and pyramidal signs culminating in severe neuronal degeneration. Currently, there is no therapy able to modify disease progression. In the present study, we aimed at investigating one of the most severely affected brain regions in the disorder-the cerebellum-and the behavioral defects associated with the neuropathology in this region. For this purpose, we injected lentiviral vectors encoding full-length human mutant ataxin-3 in the mouse cerebellum of 3-week-old C57/BL6 mice. We show that circumscribed expression of human mutant ataxin-3 in the cerebellum mediates within a short time frame-6 weeks, the development of a behavioral phenotype including reduced motor coordination, wide-based ataxic gait, and hyperactivity. Furthermore, the expression of mutant ataxin-3 resulted in the accumulation of intranuclear inclusions, neuropathological abnormalities, and neuronal death. These data show that lentiviral-based expression of mutant ataxin-3 in the mouse cerebellum induces localized neuropathology, which is sufficient to generate a behavioral ataxic phenotype. Moreover, this approach provides a physiologically relevant, cost-effective and time-effective animal model to gain further insights into the pathogenesis of MJD and for the evaluation of experimental therapeutics of MJD.
Resumo:
We investigated whether mouse mammary tumor virus (MMTV) favors preactivated or naive B cells as targets for efficient infection. We have demonstrated previously that MMTV activates B cells upon infection. Here, we show that polyclonal activation of B cells leads instead to lower infection levels and attenuated superantigen-specific T-cell responses in vivo. This indicates that naive small resting B cells are the major targets of MMTV infection and that the activation induced by MMTV is sufficient to allow efficient infection.
Resumo:
P fimbriae are proteinaceous appendages on the surface of Escherichia coli bacteria that mediate adherence to uroepithelial cells. E. coli that express P fimbriae account for the majority of ascending urinary tract infections in women with normal urinary tracts. The hypothesis that P fimbriae on uropathic E. coli attach to renal epithelia and may regulate the immune response to establish infection was investigated. The polymeric Ig receptor (pIgR), produced by renal epithelia, transports IgA into the urinary space. Kidney pIgR and urine IgA levels were analyzed in a mouse model of ascending pyelonephritis, using E. coli with (P+) and without (P-) P fimbriae, to determine whether P(+) E. coli regulate epithelial pIgR expression and IgA transport into the urine. (P+) E. coli establish infection and persist to a greater amount than P(-) E. coli. P(+)-infected mice downregulate pIgR mRNA and protein levels compared with P(-)-infected or PBS controls at > or =48 h. The decrease in pIgR was associated with decreased urinary IgA levels in the P(+)-infected group at 48 h. pIgR mRNA and protein also decline in P(+) E. coli-infected LPS-hyporesponsive mice. These studies identify a novel virulence mechanism of E. coli that express P fimbriae. It is proposed that P fimbriae decrease pIgR expression in the kidney and consequently decrease IgA transport into the urinary space. This may explain, in part, how E. coli that bear P fimbriae exploit the immune system of human hosts to establish ascending pyelonephritis.
Resumo:
B cells are the primary targets of infection for mouse mammary tumor virus (MMTV). However, for productive retroviral infection, T cell stimulation through the virally-encoded superantigen (SAG) is necessary. It activates B cells and leads to cell division and differentiation. To characterize the role of B cell differentiation for the MMTV life cycle, we studied the course of infection in transgenic mice deficient for CD28/CTLA4-B7 interactions (mCTLA4-H gamma 1 transgenic mice). B cell infection occurred in CTLA4-H gamma 1 transgenic mice as integrated proviral DNA could be detected in draining lymph node cells early after infection by polymerase chain reaction analysis. In mice expressing I-E, B cells were able to present the viral SAG efficiently to V beta 6+ T cells. These cells expanded specifically and were triggered to express the activation marker CD69. Further stages of progression of infection appeared to be defective. Kinetics experiments indicated that T and B cell stimulation stopped more rapidly than in control mice. B cells acquired an activated CD69+ phenotype, were induced to produce IgM but only partially switched to IgG secretion. Finally, the dissemination of infected cells to other lymph nodes and spleen was reduced and the peripheral deletion of V beta 6+ T cells was minimal. In contrast, in mice lacking I-E, T cell stimulation was also impaired and B cell activation undetectable. These data implicate B7-dependent cellular interactions for superantigenic T cell stimulation by low-affinity TCR ligands and suggest a role of B cell differentiation in viral dissemination and peripheral T cell deletion.
Resumo:
Surface- or biosynthetically labeled Lyt-2/3 antigens were isolated from cell lysates by immunoprecipitation and affinity chromatography with a monoclonal antibody. Tryptic digests of the individual subunits of 37,000, 32,000 and 28,000 apparent mol. wts were analysed by reverse-phase high-performance liquid chromatography and by two-dimensional peptide mapping. The results indicate that the 37,000 and 32,000 mol. wt components are structurally very similar whereas the 28,000 mol. wt component appears as a different molecule.
Resumo:
A procedure was devised for the identification and specific cloning of functionally rearranged variable region immunoglobulin (Ig) gene segments from genomic DNA of a murine hybridoma cell line which produces a high-affinity monoclonal antibody (MAb) directed against human carcinoembryonic antigen (CEA). The cloned, functionally-rearranged murine Ig H-chain and L-chain variable region gene segments were incorporated into plasmid vectors capable of directing the expression of a chimaeric mouse-human antibody molecule with human (gamma 4, kappa) constant region sequences. Expression plasmids were transfected into a mouse myeloma cell line by electroporation and transfectomas secreting functional chimaeric antibody selected. Chimaeric antibody generated by transfectomas was analysed and shown to compete effectively with its murine counterpart for binding to the CEA epitope, and to have an equivalent antigen-binding affinity. This anti-CEA recombinant antibody should find application in in vivo diagnosis by immunoscintigraphy of human colonic carcinoma, and possibly also in therapy of the disease, overcoming some of the difficulties associated with the repeated use of non-human immunoglobulins in human patients.