116 resultados para Motion picture plays.
Resumo:
Diffusion-weighted spin-echo imaging of the spine has been successfully implemented for differentiation of benign fracture edema and tumor infiltration of the vertebral body. Nevertheless, this technique still suffers from insufficient image quality in numerous patients due to motion artifacts. The aim of this study was to investigate the impact of variable respiratory motion artifact suppression techniques on image quality in diffusion-weighted spin-echo imaging of the spine. In addition to phase-encoding reordering, a newly implemented right hemi-diaphragmaitc navigator for respiratory gating was used. Subjective and objective image quality parameters were compared. Respiratory motion artifact suppression has a major impact on image quality in diffusion-weighted imaging of the spine. Phase-encoding reordering does not enhance image quality while right hemi-diaphragmatic respiratory navigator gating significantly improves image quality at the cost of data acquisition time. Navigator gating should be used if standard spin-echo diffusion-weighted imaging demonstrates insufficient image quality.
Resumo:
BACKGROUND AND PURPOSE: Intravoxel incoherent motion MRI has been proposed as an alternative method to measure brain perfusion. Our aim was to evaluate the utility of intravoxel incoherent motion perfusion parameters (the perfusion fraction, the pseudodiffusion coefficient, and the flow-related parameter) to differentiate high- and low-grade brain gliomas. MATERIALS AND METHODS: The intravoxel incoherent motion perfusion parameters were assessed in 21 brain gliomas (16 high-grade, 5 low-grade). Images were acquired by using a Stejskal-Tanner diffusion pulse sequence, with 16 values of b (0-900 s/mm(2)) in 3 orthogonal directions on 3T systems equipped with 32 multichannel receiver head coils. The intravoxel incoherent motion perfusion parameters were derived by fitting the intravoxel incoherent motion biexponential model. Regions of interest were drawn in regions of maximum intravoxel incoherent motion perfusion fraction and contralateral control regions. Statistical significance was assessed by using the Student t test. In addition, regions of interest were drawn around all whole tumors and were evaluated with the help of histograms. RESULTS: In the regions of maximum perfusion fraction, perfusion fraction was significantly higher in the high-grade group (0.127 ± 0.031) than in the low-grade group (0.084 ± 0.016, P < .001) and in the contralateral control region (0.061 ± 0.011, P < .001). No statistically significant difference was observed for the pseudodiffusion coefficient. The perfusion fraction correlated moderately with dynamic susceptibility contrast relative CBV (r = 0.59). The histograms of the perfusion fraction showed a "heavy-tailed" distribution for high-grade but not low-grade gliomas. CONCLUSIONS: The intravoxel incoherent motion perfusion fraction is helpful for differentiating high- from low-grade brain gliomas.
Resumo:
Background: Sulfate and phosphate are both vital macronutrients required for plant growth and development. Despite evidence for interaction between sulfate and phosphate homeostasis, no transcriptional factor has yet been identified in higher plants that affects, at the gene expression and physiological levels, the response to both elements. This work was aimed at examining whether PHR1, a transcription factor previously shown to participate in the regulation of genes involved in phosphate homeostasis, also contributed to the regulation and activity of genes involved in sulfate inter-organ transport. Results: Among the genes implicated in sulfate transport in Arabidopsis thaliana, SULTR1;3 and SULTR3;4 showed up-regulation of transcripts in plants grown under phosphate-deficient conditions. The promoter of SULTR1;3 contains a motif that is potentially recognizable by PHR1. Using the phr1 mutant, we showed that SULTR1;3 up regulation following phosphate deficiency was dependent on PHR1. Furthermore, transcript up regulation was found in phosphate-deficient shoots of the phr1 mutant for SULTR2;1 and SULTR3;4, indicating that PHR1 played both a positive and negative role on the expression of genes encoding sulfate transporters. Importantly, both phr1 and sultr1;3 mutants displayed a reduction in their sulfate shoot-to-root transfer capacity compared to wild-type plants under phosphate-deficient conditions. Conclusions: This study reveals that PHR1 plays an important role in sulfate inter-organ transport, in particular on the regulation of the SULTR1;3 gene and its impact on shoot-to-root sulfate transport in phosphate-deficient plants. PHR1 thus contributes to the homeostasis of both sulfate and phosphate in plants under phosphate deficiency. Such a function is also conserved in Chlamydomonas reinhardtii via the PHR1 ortholog PSR1.
Resumo:
PURPOSE: Respiratory motion correction remains a challenge in coronary magnetic resonance imaging (MRI) and current techniques, such as navigator gating, suffer from sub-optimal scan efficiency and ease-of-use. To overcome these limitations, an image-based self-navigation technique is proposed that uses "sub-images" and compressed sensing (CS) to obtain translational motion correction in 2D. The method was preliminarily implemented as a 2D technique and tested for feasibility for targeted coronary imaging. METHODS: During a 2D segmented radial k-space data acquisition, heavily undersampled sub-images were reconstructed from the readouts collected during each cardiac cycle. These sub-images may then be used for respiratory self-navigation. Alternatively, a CS reconstruction may be used to create these sub-images, so as to partially compensate for the heavy undersampling. Both approaches were quantitatively assessed using simulations and in vivo studies, and the resulting self-navigation strategies were then compared to conventional navigator gating. RESULTS: Sub-images reconstructed using CS showed a lower artifact level than sub-images reconstructed without CS. As a result, the final image quality was significantly better when using CS-assisted self-navigation as opposed to the non-CS approach. Moreover, while both self-navigation techniques led to a 69% scan time reduction (as compared to navigator gating), there was no significant difference in image quality between the CS-assisted self-navigation technique and conventional navigator gating, despite the significant decrease in scan time. CONCLUSIONS: CS-assisted self-navigation using 2D translational motion correction demonstrated feasibility of producing coronary MRA data with image quality comparable to that obtained with conventional navigator gating, and does so without the use of additional acquisitions or motion modeling, while still allowing for 100% scan efficiency and an improved ease-of-use. In conclusion, compressed sensing may become a critical adjunct for 2D translational motion correction in free-breathing cardiac imaging with high spatial resolution. An expansion to modern 3D approaches is now warranted.
Resumo:
The glucocorticoid-induced leucine zipper (Tsc22d3-2) is a widely expressed dexamethasone-induced transcript that has been proposed to be important in immunity, adipogenesis, and renal sodium handling based on in vitro studies. To address its function in vivo, we have used Cre/loxP technology to generate mice deficient for Tsc22d3-2. Male knockout mice were viable but surprisingly did not show any major deficiencies in immunological processes or inflammatory responses. Tsc22d3-2 knockout mice adapted to a sodium-deprived diet and to water deprivation conditions but developed a subtle deficiency in renal sodium and water handling. Moreover, the affected animals developed a mild metabolic phenotype evident by a reduction in weight from 6 months of age, mild hyperinsulinemia, and resistance to a high-fat diet. Tsc22d3-2-deficient males were infertile and exhibited severe testis dysplasia from postnatal d 10 onward with increases in apoptotic cells within seminiferous tubules, an increased number of Leydig cells, and significantly elevated FSH and testosterone levels. Thus, our analysis of the Tsc22d3-2-deficient mice demonstrated a previously uncharacterized function of glucocorticoid-induced leucine zipper protein in testis development.
Resumo:
Blue light is known to cause rapid phosphorylation of a membrane protein in etiolated seedlings of several plant species, a protein that, at least in etiolated pea seedlings and maize coleoptiles, has been shown to be associated with the plasma membrane. The light-driven phosphorylation has been proposed on the basis of correlative evidence to be an early step in the signal transduction chain for phototropism. In the Arabidopsis thaliana mutant JK224, the sensitivity to blue light for induction of first positive phototropism is known to be 20- to 30-fold lower than in wild type, whereas second positive curvature appears to be normal. While light-induced phosphorylation can be demonstrated in crude membrane preparations from shoots of the mutant, the level of phosphorylation is dramatically lower than in wild type, as is the sensitivity to blue light. Another A. thaliana mutant, JK218, that completely lacks any phototropic responses to up to 2 h of irradiation, shows a normal level of light-induced phosphorylation at saturation. Since its gravitropic sensitivity is normal, it is presumably blocked in some step between photoreception and the confluence of the signal transduction pathways for phototropism and gravitropism. We conclude from mutant JK224 that light-induced phosphorylation plays an early role in the signal transduction chain for phototropism in higher plants.
Resumo:
Previous research has demonstrated covariation of physiological responding with judgments of valence and arousal. However, until now links between these affective dimensions and respiratory measures have not been extensively investigated. In this study, eight picture series of different affective valence and arousal level were shown to 30 subjects, while respiration, skin conductance level (SCL), heart rate (HR) and affective judgments were measured. With increasing pleasantness, inspiratory time lengthened, mean inspiratory flow decreased and thoracic breathing increased. With increasing arousal, inspiratory time and total breath duration shortened and mean inspiratory flow, minute ventilation, thoracic breathing and electrodermal activity increased. These findings confirm the importance of arousal in respiratory responding, but also indicate a modulatory role of affective valence.We propose that the arousal effects reflect energy mobilization in preparation to act, and thatthe valence effects might be a manifestation of an attention bias toward negative stimuli. [Authors]
Resumo:
Inspired by experiments that use single-particle tracking to measure the regions of confinement of selected chromosomal regions within cell nuclei, we have developed an analytical approach that takes into account various possible positions and shapes of the confinement regions. We show, in particular, that confinement of a particle into a subregion that is entirely enclosed within a spherical volume can lead to a higher limit of the mean radial square displacement value than the one associated with a particle that can explore the entire spherical volume. Finally, we apply the theory to analyse the motion of extrachromosomal chromatin rings within nuclei of living yeast.
Resumo:
Purpose: To investigate the effect of incremental increases in intraocular straylight on threshold measurements made by three modern forms of perimetry: Standard Automated Perimetry (SAP) using Octopus (Dynamic, G-Pattern), Pulsar Perimetry (PP) (TOP, 66 points) and the Moorfields Motion Displacement Test (MDT) (WEBS, 32 points).Methods: Four healthy young observers were recruited (mean age 26yrs [25yrs, 28yrs]), refractive correction [+2 D, -4.25D]). Five white opacity filters (WOF), each scattering light by different amounts were used to create incremental increases in intraocular straylight (IS). Resultant IS values were measured with each WOF and at baseline (no WOF) for each subject using a C-Quant Straylight Meter (Oculus, Wetzlar, Germany). A 25 yr old has an IS value of ~0.85 log(s). An increase of 40% in IS to 1.2log(s) corresponds to the physiological value of a 70yr old. Each WOFs created an increase in IS between 10-150% from baseline, ranging from effects similar to normal aging to those found with considerable cataract. Each subject underwent 6 test sessions over a 2-week period; each session consisted of the 3 perimetric tests using one of the five WOFs and baseline (both instrument and filter were randomised).Results: The reduction in sensitivity from baseline was calculated. A two-way ANOVA on mean change in threshold (where subjects were treated as rows in the block and each increment in fog filters was treated as column) was used to examine the effect of incremental increases in straylight. Both SAP (p<0.001) and Pulsar (p<0.001) were significantly affected by increases in straylight. The MDT (p=0.35) remained comparatively robust to increases in straylight.Conclusions: The Moorfields MDT measurement of threshold is robust to effects of additional straylight as compared to SAP and PP.