25 resultados para Monitor Command System (Computer program)
Resumo:
Therapeutic drug monitoring (TDM) aims to optimize treatments by individualizing dosage regimens based on the measurement of blood concentrations. Dosage individualization to maintain concentrations within a target range requires pharmacokinetic and clinical capabilities. Bayesian calculations currently represent the gold standard TDM approach but require computation assistance. In recent decades computer programs have been developed to assist clinicians in this assignment. The aim of this survey was to assess and compare computer tools designed to support TDM clinical activities. The literature and the Internet were searched to identify software. All programs were tested on personal computers. Each program was scored against a standardized grid covering pharmacokinetic relevance, user friendliness, computing aspects, interfacing and storage. A weighting factor was applied to each criterion of the grid to account for its relative importance. To assess the robustness of the software, six representative clinical vignettes were processed through each of them. Altogether, 12 software tools were identified, tested and ranked, representing a comprehensive review of the available software. Numbers of drugs handled by the software vary widely (from two to 180), and eight programs offer users the possibility of adding new drug models based on population pharmacokinetic analyses. Bayesian computation to predict dosage adaptation from blood concentration (a posteriori adjustment) is performed by ten tools, while nine are also able to propose a priori dosage regimens, based only on individual patient covariates such as age, sex and bodyweight. Among those applying Bayesian calculation, MM-USC*PACK© uses the non-parametric approach. The top two programs emerging from this benchmark were MwPharm© and TCIWorks. Most other programs evaluated had good potential while being less sophisticated or less user friendly. Programs vary in complexity and might not fit all healthcare settings. Each software tool must therefore be regarded with respect to the individual needs of hospitals or clinicians. Programs should be easy and fast for routine activities, including for non-experienced users. Computer-assisted TDM is gaining growing interest and should further improve, especially in terms of information system interfacing, user friendliness, data storage capability and report generation.
Resumo:
The present study investigates the short- and long-term outcomes of a computer-assisted cognitive remediation (CACR) program in adolescents with psychosis or at high risk. 32 adolescents participated in a blinded 8-week randomized controlled trial of CACR treatment compared to computer games (CG). Clinical and neuropsychological evaluations were undertaken at baseline, at the end of the program and at 6-month. At the end of the program (n = 28), results indicated that visuospatial abilities (Repeatable Battery for the Assessment of Neuropsychological Status, RBANS; P = .005) improved signifi cantly more in the CACR group compared to the CG group. Furthermore, other cognitive functions (RBANS), psychotic symptoms (Positive and Negative Symptom Scale) and psychosocial functioning (Social and Occupational Functioning Assessment Scale) improved signifi cantly, but at similar rates, in the two groups. At long term (n = 22), cognitive abilities did not demonstrated any amelioration in the control group while, in the CACR group, signifi cant long-term improvements in inhibition (Stroop; P = .040) and reasoning (Block Design Test; P = .005) were observed. In addition, symptom severity (Clinical Global Improvement) decreased signifi cantly in the control group (P = .046) and marginally in the CACR group (P = .088). To sum up, CACR can be successfully administered in this population. CACR proved to be effective over and above CG for the most intensively trained cognitive ability. Finally, on the long-term, enhanced reasoning and inhibition abilities, which are necessary to execute higher-order goals or to adapt behavior to the ever-changing environment, were observed in adolescents benefi ting from a CACR.
Resumo:
Introduction: Therapeutic drug monitoring (TDM) aims at optimizing treatment by individualizing dosage regimen based on measurement of blood concentrations. Maintaining concentrations within a target range requires pharmacokinetic and clinical capabilities. Bayesian calculation represents a gold standard in TDM approach but requires computing assistance. In the last decades computer programs have been developed to assist clinicians in this assignment. The aim of this benchmarking was to assess and compare computer tools designed to support TDM clinical activities.¦Method: Literature and Internet search was performed to identify software. All programs were tested on common personal computer. Each program was scored against a standardized grid covering pharmacokinetic relevance, user-friendliness, computing aspects, interfacing, and storage. A weighting factor was applied to each criterion of the grid to consider its relative importance. To assess the robustness of the software, six representative clinical vignettes were also processed through all of them.¦Results: 12 software tools were identified, tested and ranked. It represents a comprehensive review of the available software's characteristics. Numbers of drugs handled vary widely and 8 programs offer the ability to the user to add its own drug model. 10 computer programs are able to compute Bayesian dosage adaptation based on a blood concentration (a posteriori adjustment) while 9 are also able to suggest a priori dosage regimen (prior to any blood concentration measurement), based on individual patient covariates, such as age, gender, weight. Among those applying Bayesian analysis, one uses the non-parametric approach. The top 2 software emerging from this benchmark are MwPharm and TCIWorks. Other programs evaluated have also a good potential but are less sophisticated (e.g. in terms of storage or report generation) or less user-friendly.¦Conclusion: Whereas 2 integrated programs are at the top of the ranked listed, such complex tools would possibly not fit all institutions, and each software tool must be regarded with respect to individual needs of hospitals or clinicians. Interest in computing tool to support therapeutic monitoring is still growing. Although developers put efforts into it the last years, there is still room for improvement, especially in terms of institutional information system interfacing, user-friendliness, capacity of data storage and report generation.
Resumo:
Objectives: Therapeutic drug monitoring (TDM) aims at optimizing treatment by individualizing dosage regimen based on blood concentrations measurement. Maintaining concentrations within a target range requires pharmacokinetic (PK) and clinical capabilities. Bayesian calculation represents a gold standard in TDM approach but requires computing assistance. The aim of this benchmarking was to assess and compare computer tools designed to support TDM clinical activities.¦Methods: Literature and Internet were searched to identify software. Each program was scored against a standardized grid covering pharmacokinetic relevance, user-friendliness, computing aspects, interfacing, and storage. A weighting factor was applied to each criterion of the grid to consider its relative importance. To assess the robustness of the software, six representative clinical vignettes were also processed through all of them.¦Results: 12 software tools were identified, tested and ranked. It represents a comprehensive review of the available software characteristics. Numbers of drugs handled vary from 2 to more than 180, and integration of different population types is available for some programs. Nevertheless, 8 programs offer the ability to add new drug models based on population PK data. 10 computer tools incorporate Bayesian computation to predict dosage regimen (individual parameters are calculated based on population PK models). All of them are able to compute Bayesian a posteriori dosage adaptation based on a blood concentration while 9 are also able to suggest a priori dosage regimen, only based on individual patient covariates. Among those applying Bayesian analysis, MM-USC*PACK uses a non-parametric approach. The top 2 programs emerging from this benchmark are MwPharm and TCIWorks. Others programs evaluated have also a good potential but are less sophisticated or less user-friendly.¦Conclusions: Whereas 2 software packages are ranked at the top of the list, such complex tools would possibly not fit all institutions, and each program must be regarded with respect to individual needs of hospitals or clinicians. Programs should be easy and fast for routine activities, including for non-experienced users. Although interest in TDM tools is growing and efforts were put into it in the last years, there is still room for improvement, especially in terms of institutional information system interfacing, user-friendliness, capability of data storage and automated report generation.
Resumo:
Intensity-modulated radiotherapy (IMRT) treatment plan verification by comparison with measured data requires having access to the linear accelerator and is time consuming. In this paper, we propose a method for monitor unit (MU) calculation and plan comparison for step and shoot IMRT based on the Monte Carlo code EGSnrc/BEAMnrc. The beamlets of an IMRT treatment plan are individually simulated using Monte Carlo and converted into absorbed dose to water per MU. The dose of the whole treatment can be expressed through a linear matrix equation of the MU and dose per MU of every beamlet. Due to the positivity of the absorbed dose and MU values, this equation is solved for the MU values using a non-negative least-squares fit optimization algorithm (NNLS). The Monte Carlo plan is formed by multiplying the Monte Carlo absorbed dose to water per MU with the Monte Carlo/NNLS MU. Several treatment plan localizations calculated with a commercial treatment planning system (TPS) are compared with the proposed method for validation. The Monte Carlo/NNLS MUs are close to the ones calculated by the TPS and lead to a treatment dose distribution which is clinically equivalent to the one calculated by the TPS. This procedure can be used as an IMRT QA and further development could allow this technique to be used for other radiotherapy techniques like tomotherapy or volumetric modulated arc therapy.
Resumo:
quantiNemo is an individual-based, genetically explicit stochastic simulation program. It was developed to investigate the effects of selection, mutation, recombination and drift on quantitative traits with varying architectures in structured populations connected by migration and located in a heterogeneous habitat. quantiNemo is highly flexible at various levels: population, selection, trait(s) architecture, genetic map for QTL and/or markers, environment, demography, mating system, etc. quantiNemo is coded in C++ using an object-oriented approach and runs on any computer platform. Availability: Executables for several platforms, user's manual, and source code are freely available under the GNU General Public License at http://www2.unil.ch/popgen/softwares/quantinemo.
Antiretroviral adherence program in HIV patients: a feasibility study in the Swiss HIV Cohort Study.
Resumo:
Objective To evaluate the feasibility of a comprehensive, interdisciplinary adherence program aimed at HIV patients. Setting Two centers of the Swiss HIV Cohort Study: Lausanne and Basel. Method 6-month, pilot, quasi-experimental, 2-arm design (control and intervention). Patients starting a first or second combined antiretroviral therapy line were invited to participate in the study. Patients entering the intervention arm were proposed a multifactorial intervention along with an electronic drug monitor. It consisted of a maximum of six 30-min sessions with the interventionist coinciding with routine HIV check-up. The sessions relied on individualized semi-structured motivational interviews. Patients in the control arm used directly blinded EDM and did not participate in motivational interviews. Main outcome measures Rate of patients' acceptance to take part in the HIV-adherence program and rate of patients' retention in this program assessed in both intervention and control groups. Persistence, execution and adherence. Results The study was feasible in one center but not in the other one. Hence, the control group previously planned in Basel was recruited in Lausanne. Inclusion rate was 84% (n = 21) in the intervention versus 52% (n = 11) in the control group (P = 0.027). Retention rate was 91% in the intervention versus 82% in the control group (P = ns). Regarding adherence, execution was high in both groups (97 vs. 95%). Interestingly, the statistical model showed that adherence decreased more quickly in the control versus the intervention group (interaction group × time P < 0.0001). Conclusion The encountered difficulties rely on the implementation, i.e., on the program and the health care system levels rather than on the patient level. Implementation needs to be evaluated further; to be feasible a new adherence program needs to fit into the daily routine of the centre and has to be supported by all trained healthcare providers. However, this study shows that patients' adherence behavior evolved differently in both groups; it decreased more quickly over time in the control than in the intervention group. RCTs are eventually needed to assess the clinical impact of such an adherence program and to verify whether skilled pharmacists can ensure continuity of care for HIV outpatients.