55 resultados para Molecular medicine


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ankyloblepharon-ectodermal defects-cleft lip/palate (AEC) syndrome, which is characterized by cleft palate and severe defects of the skin, is an autosomal dominant disorder caused by mutations in the gene encoding transcription factor p63. Here, we report the generation of a knock-in mouse model for AEC syndrome (p63(+/L514F) ) that recapitulates the human disorder. The AEC mutation exerts a selective dominant-negative function on wild-type p63 by affecting progenitor cell expansion during ectodermal development leading to a defective epidermal stem cell compartment. These phenotypes are associated with impairment of fibroblast growth factor (FGF) signalling resulting from reduced expression of Fgfr2 and Fgfr3, direct p63 target genes. In parallel, a defective stem cell compartment is observed in humans affected by AEC syndrome and in Fgfr2b(-/-) mice. Restoring Fgfr2b expression in p63(+/L514F) epithelial cells by treatment with FGF7 reactivates downstream mitogen-activated protein kinase signalling and cell proliferation. These findings establish a functional link between FGF signalling and p63 in the expansion of epithelial progenitor cells and provide mechanistic insights into the pathogenesis of AEC syndrome.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The benzothiazinone lead compound, BTZ043, kills Mycobacterium tuberculosis by inhibiting the essential flavo-enzyme DprE1, decaprenylphosphoryl-beta-D-ribose 2-epimerase. Here, we synthesized a new series of piperazine-containing benzothiazinones (PBTZ) and show that, like BTZ043, the preclinical candidate PBTZ169 binds covalently to DprE1. The crystal structure of the DprE1-PBTZ169 complex reveals formation of a semimercaptal adduct with Cys387 in the active site and explains the irreversible inactivation of the enzyme. Compared to BTZ043, PBTZ169 has improved potency, safety and efficacy in zebrafish and mouse models of tuberculosis (TB). When combined with other TB drugs, PBTZ169 showed additive activity against M. tuberculosis in vitro except with bedaquiline (BDQ) where synergy was observed. A new regimen comprising PBTZ169, BDQ and pyrazinamide was found to be more efficacious than the standard three drug treatment in a murine model of chronic disease. PBTZ169 is thus an attractive drug candidate to treat TB in humans.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although non-melanoma skin cancer (NMSC) is the most common human cancer and its incidence continues to rise worldwide, the mechanisms underlying its development remain incompletely understood. Here, we unveil a cascade of events involving peroxisome proliferator-activated receptor (PPAR) β/δ and the oncogene Src, which promotes the development of ultraviolet (UV)-induced skin cancer in mice. UV-induced PPARβ/δ activity, which directly stimulated Src expression, increased Src kinase activity and enhanced the EGFR/Erk1/2 signalling pathway, resulting in increased epithelial-to-mesenchymal transition (EMT) marker expression. Consistent with these observations, PPARβ/δ-null mice developed fewer and smaller skin tumours, and a PPARβ/δ antagonist prevented UV-dependent Src stimulation. Furthermore, the expression of PPARβ/δ positively correlated with the expression of SRC and EMT markers in human skin squamous cell carcinoma (SCC), and critically, linear models applied to several human epithelial cancers revealed an interaction between PPARβ/δ and SRC and TGFβ1 transcriptional levels. Taken together, these observations motivate the future evaluation of PPARβ/δ modulators to attenuate the development of several epithelial cancers.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The nuclear factor erythroid 2-related factor 2 (Nrf2) is best known for its role in resistance to oxidant stress. In this issue of EMBO Molecular Medicine, Nrf2-prolonged genetic activation is shown with devastating effects on skin homeostasis. The study provides novel molecular insights into poison-induced chloracne and metabolizing acquired dioxin-induced skin hamartomas or MADISH.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The classical T cell cytokine macrophage migration inhibitory factor (MIF) has reemerged recently as a critical mediator of the host immune and stress response. MIF has been found to be a mediator of several diseases including gram-negative septic shock and delayed-type hypersensitivity reactions. Its immunological functions include the modulation of the host macrophage and T and B cell response. In contrast to other known cytokines, MIF production is induced rather than suppressed by glucocorticoids, and MIF has been found to override the immunosuppressive effects of glucocorticoids. Recently, elucidation of the three-dimensional structure of MIF revealed that MIF has a novel, unique cytokine structure. Here the biological role of MIF is reviewed in view of its distinct immunological and structural properties.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

IL-28 (IFN-λ) cytokines exhibit potent antiviral and antitumor function but their full spectrum of activities remains largely unknown. Recently, IL-28 cytokine family members were found to be profoundly down-regulated in allergic asthma. We now reveal a novel role of IL-28 cytokines in inducing type 1 immunity and protection from allergic airway disease. Treatment of wild-type mice with recombinant or adenovirally expressed IL-28A ameliorated allergic airway disease, suppressed Th2 and Th17 responses and induced IFN-γ. Moreover, abrogation of endogenous IL-28 cytokine function in IL-28Rα(-/-) mice exacerbated allergic airway inflammation by augmenting Th2 and Th17 responses, and IgE levels. Central to IL-28A immunoregulatory activity was its capacity to modulate lung CD11c(+) dendritic cell (DC) function to down-regulate OX40L, up-regulate IL-12p70 and promote Th1 differentiation. Consistently, IL-28A-mediated protection was absent in IFN-γ(-/-) mice or after IL-12 neutralization and could be adoptively transferred by IL-28A-treated CD11c(+) cells. These data demonstrate a critical role of IL-28 cytokines in controlling T cell responses in vivo through the modulation of lung CD11c(+) DC function in experimental allergic asthma. →See accompanying Closeup by Michael R Edwards and Sebastian L Johnston http://dx.doi.org/10.1002/emmm.201100143.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The skin provides an efficient permeability barrier and protects from microbial invasion and oxidative stress. Here, we show that these essential functions are linked through the Nrf2 transcription factor. To test the hypothesis that activation of Nrf2 provides skin protection under stress conditions, we determined the consequences of pharmacological or genetic activation of Nrf2 in keratinocytes. Surprisingly, mice with enhanced Nrf2 activity in keratinocytes developed epidermal thickening, hyperkeratosis and inflammation resembling lamellar ichthyosis. This resulted from upregulation of the cornified envelope proteins small proline-rich proteins (Sprr) 2d and 2h and of secretory leukocyte peptidase inhibitor (Slpi), which we identified as novel Nrf2 targets in keratinocytes. Since Sprrs are potent scavengers of reactive oxygen species and since Slpi has antimicrobial activities, their upregulation contributes to Nrf2's protective function. However, it also caused corneocyte fragility and impaired desquamation, followed by alterations in the epidermal lipid barrier, inflammation and overexpression of mitogens that induced keratinocyte hyperproliferation. These results identify an unexpected role of Nrf2 in epidermal barrier function, which needs to be considered for pharmacological use of Nrf2 activators.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Photodynamic therapy (PDT) is an effective clinical treatment for a number of different cancers. PDT can induce hypoxia and inflammation, pro-angiogenic side effects, which may counteract its angio-occlusive mechanism. The combination of PDT with anti-angiogenic drugs offers a possibility for improved anti-tumour outcome. We used two tumour models to test the effects of the clinically approved angiostatic tyrosine kinase inhibitors sunitinib, sorafenib and axitinib in combination with PDT, and compared these results with the effects of bevacizumab, the anti-VEGF antibody, for the improvement of PDT. Best results were obtained from the combination of PDT and low-dose axitinib or sorafenib. Molecular analysis by PCR revealed that PDT in combination with axitinib suppressed VEGFR-2 expression in tumour vasculature. Treatment with bevacizumab, although effective as monotherapy, did not improve PDT outcome. In order to test for tumour vessel normalization effects, axitinib was also applied prior to PDT. The absence of improved PDT outcome in these experiments, as well as the lack of increased oxygenation in axitinib-treated tumours, suggests that vascular normalization did not occur. The current data imply that there is a future for certain anti-angiogenic agents to further improve the efficacy of photodynamic anti-cancer therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

?  Introduction ?  Bone fracture healing and healing problems ?  Biomaterial scaffolds and tissue engineering in bone formation -  Bone tissue engineering -  Biomaterial scaffolds -  Synthetic scaffolds -  Micro- and nanostructural properties of scaffolds -  Conclusion ?  Mesenchymal stem cells and osteogenesis -  Bone tissue -  Origin of osteoblasts -  Isolation and characterization of bone marrow derived MSC -  In vitro differentiation of MSC into osteoblast lineage cells -  In vivo differentiation of MSC into bone -  Factors and pathways controlling osteoblast differentiation of hMSC -  Defining the relationship between osteoblast and adipocyte differentiation from MSC -  MSC and sex hormones -  Effect of aging on osteoblastogenesis -  Conclusion ?  Embryonic, foetal and adult stem cells in osteogenesis -  Cell-based therapies for bone -  Specific features of bone cells needed to be advantageous for clinical use -  Development of therapeutic biological agents -  Clinical application concerns -  Conclusion ?  Platelet-rich plasma (PRP), growth factors and osteogenesis -  PRP effects in vitro on the cells involved in bone repair -  PRP effects on osteoblasts -  PRP effects on osteoclasts -  PRP effects on endothelial cells -  PRP effects in vivo on experimental animals -  The clinical use of PRP for bone repair -  Non-union -  Distraction osteogenesis -  Spinal fusion -  Foot and ankle surgery -  Total knee arthroplasty -  Odontostomatology and maxillofacial surgery -  Conclusion ?  Molecular control of osteogenesis -  TGF-β signalling -  FGF signalling -  IGF signalling -  PDGF signalling -  MAPK signalling pathway -  Wnt signalling pathway -  Hedgehog signalling -  Notch signalling -  Ephrin signalling -  Transcription factors regulating osteoblast differentiation -  Conclusion ?  Summary This invited review covers research areas of central importance for orthopaedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and foetal stem cells, effects of sex steroids on mesenchymal stem cells, use of platelet-rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Neutrophil NETosis is an important element of host defense as it catapults chromatin out of the cell to trap bacteria, which then are killed, e.g., by the chromatin's histone component. Also, during sterile inflammation TNF-alpha and other mediators trigger NETosis, which elicits cytotoxic effects on host cells. The same mechanism should apply to other forms of regulated necrosis including pyroptosis, necroptosis, ferroptosis, and cyclophilin D-mediated regulated necrosis. Beyond these toxic effects, extracellular histones also trigger thrombus formation and innate immunity by activating Toll-like receptors and the NLRP3 inflammasome. Thereby, extracellular histones contribute to the microvascular complications of sepsis, major trauma, small vessel vasculitis as well as acute liver, kidney, brain, and lung injury. Finally, histones prevent the degradation of extracellular DNA, which promotes autoimmunization, anti-nuclear antibody formation, and autoimmunity in susceptible individuals. Here, we review the current evidence on the pathogenic role of extracellular histones in disease and discuss how to target extracellular histones to improve disease outcomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Mutations in humans are associated with several forms of inherited retinal dystrophies, such as Retinitis Pigmentosa which lead to retinal cell death and irreversible loss of vision. Genes involved in affected patients mainly encode proteins related to vision physiology including visual cycle and light-dependent phototransduction cascade. As reported in spontaneous and genetically engineered mouse models, apoptosis is a common fate in retinal degeneration, although the triggered signals to retinal apoptosis remain largely unraveled. Several studies highlighted that many of the molecular pathways involved in ocular diseases rely on caspase-dependent or -independent apoptotic mitochondrial pathway involving the Bcl-2 family of proteins. Anti- and pro-apoptotic Bcl-2 members are present in retinal tissues and are thought to play a role in the pathogenesis of several retinal disorders. Since almost no efficient treatments are available so far, it remains a great challenge to decipher the molecular pathways involved in retinal dystrophies and to develop alternative therapies to prevent or inhibit eye defect. Toward this goal, mutation-independent strategies such as molecular therapy provides promising and exciting approaches to deliver anti-apoptotic molecules targeting the Bcl-2 pathway through the use of cell permeable transport peptides. Modulation of common apoptotic signaling pathways may be of outstanding potential to target multiple retinal dystrophies regardless of the primary genetic defect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this study, we investigated the effect of the xanthine oxidase (XO) inhibitor, allopurinol (ALP), on cardiac dysfunction, oxidative-nitrosative stress, apoptosis, poly(ADP-ribose) polymerase (PARP) activity and fibrosis associated with diabetic cardiomyopathy in mice. Diabetes was induced in C57/BL6 mice by injection of streptozotocin. Control and diabetic animals were treated with ALP or placebo. Left ventricular systolic and diastolic functions were measured by pressure-volume system 10 weeks after established diabetes. Myocardial XO, p22(phox), p40(phox), p47(phox), gp91(phox), iNOS, eNOS mRNA and/or protein levels, ROS and nitrotyrosine (NT) formation, caspase3/7 and PARP activity, chromatin fragmentation and various markers of fibrosis (collagen-1, TGF-beta, CTGF, fibronectin) were measured using molecular biology and biochemistry methods or immunohistochemistry. Diabetes was characterized by increased myocardial, liver and serum XO activity (but not expression), increased myocardial ROS generation, p22(phox), p40(phox), p47(phox), p91(phox) mRNA expression, iNOS (but not eNOS) expression, NT generation, caspase 3/7 and PARP activity/expression, chromatin fragmentation and fibrosis (enhanced accumulation of collagen, TGF-beta, CTGF and fibronectin), and declined systolic and diastolic myocardial performance. ALP attenuated the diabetes-induced increased myocardial, liver and serum XO activity, myocardial ROS, NT generation, iNOS expression, apoptosis, PARP activity and fibrosis, which were accompanied by improved systolic (measured by the evaluation of both load-dependent and independent indices of myocardial contractility) and diastolic performance of the hearts of treated diabetic animals. Thus, XO inhibition with ALP improves type 1 diabetes-induced cardiac dysfunction by decreasing oxidative/nitrosative stress and fibrosis, which may have important clinical implications for the treatment and prevention of diabetic cardiomyopathy and vascular dysfunction.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

DNA-binding proteins mediate a variety of crucial molecular functions, such as transcriptional regulation and chromosome maintenance, replication and repair, which in turn control cell division and differentiation. The roles of these proteins in disease are currently being investigated using microarray-based approaches. However, these assays can be difficult to adapt to routine diagnosis of complex diseases such as cancer. Here, we review promising alternative approaches involving protein-binding microarrays (PBMs) that probe the interaction of proteins from crude cell or tissue extracts with large collections of synthetic or natural DNA sequences. Recent studies have demonstrated the use of these novel PBM approaches to provide rapid and unbiased characterization of DNA-binding proteins as molecular markers of disease, for example cancer progression or infectious diseases.