43 resultados para Milho consorciado com U. ruziziensis
Resumo:
New zircon U-Pb ages are proposed for late Early and Middle Triassic volcanic ash layers from the Luolou and Baifeng formations (northwestern Guangxi, South China). These ages are based on analyses of single, thermally annealed and chemically abraded zircons. Calibration with ammonoid ages indicate a 250.6 +/- 0.5 Ma age for the early Spathian Tirolites/Columbites beds, a 248.1 +/- 0.4 Ma age for the late Spathian Neopopanoceras haugi Zone, a 246.9 +/- 0.4 Ma age for the early middle Anisian Acrochordiceras hyatti Zone, and a 244.6 +/- 0.5 Ma age for the late middle Anisian Balatonites shoshonensis Zone. The new dates and previously published U-Pb ages indicate a duration of ca. 3 my for the Spathian, and minimal durations of 4.5 +/- 0.6 my for the Early Triassic and of 6.6+0.7/-0.9 my for the Anisian. The new Spathian dates are in a better agreement with a 252.6 +/- 0.2 Ma age than with a 251.4 +/- 0.3 Ma age for the Permian-Triassic boundary. These dates also highlight the extremely uneven duration of the four Early Triassic substages (Griesbachian, Dienerian, Smithian, and Spathian), of which the Spathian exceeds half of the duration of the entire Early Triassic. The simplistic assumption of equal duration of the four Early Triassic subdivisions is no longer tenable for the reconstruction of recovery patterns following the end Permian mass extinction. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
In the Cape Caribou River allochthon (CCRA), metaigneous and gneissic units occur as a shallowly plunging synform in the hanging wall of the Grand Lake thrust system (GLTS), a Grenvillian structure that forms the boundary between the Mealy Mountains and Groswater Bay terranes. The layered rocks of the CCRA are cut by a stockwork of monzonite dykes related to the Dome Mountain suite and by metadiabase-amphibolite dykes that probably form part of the ca. 1380 Ma Mealy swarm. The mafic dykes appear to postdate much of the development of subhorizontal metamorphic layering within the lower parts of the CCRA. The uppermost (least metamorphosed) units of the CCRA, the North West River anorthosite-metagabbro and the Dome Mountain monzonite suite, have been dated at 1625 +/- 6 and 1626 +/- 2 Ma, respectively. An amphibolite unit that concordantly underlies the anorthosite-metagabbro and is intruded discordantly by monzonite dykes has given metamorphic ages of 1660 +/- 3 and 1631 +/- 2 Ma. Granitoid gneisses that form the lowest level of the CCRA have given a migmatization age of 1622 +/- 6 Ma. The effects of Grenvillian metamorphism become apparent in the lower levels of the allochthon where gneisses, amphibolite, and mafic dykes have given new generation zircon ages of 1008 +/- 2, 1012 +/- 3, and 1011 +/- 3 Ma, respectively. A posttectonic pegmatite has also given zircon and monazite ages of 1016(-3)(+7) and 1013 +/- 3 Ma, respectively. Although these results indicate new growth of Grenvillian zircon, this process was generally not accompanied by penetrative deformation or melting. Thus, the formation of gneissic fabrics and the overall layered nature of the lower CCRA are a result primarily of Labradorian (1660-1620 Ma) tectonism and intrusion, and probably reflect early movement on an ancestral GLTS. Grenvillian heating and metamorphism (up to granulite facies) was strongly concentrated towards the base of the CCRA and probably occurred during northwestward thrusting of the allochthon over the Groswater Bay terrane.
Resumo:
New ages (U-Pb isotopic data) on zircon and monazite in the pre-Alpine basement of the Penninic realm (Valais, Switzerland) are presented. They are related to a Variscan metamorphic high-grade event (ca. 330 Ma) and to post-Variscan magmatic activities (ca. 270 Ma).
Resumo:
Among the large number of granitic intrusions within the Dora-Maira massif, several main types can be distinguished. In this study we report field, petrographic and geochemical investigations as well as zircon typology and conventional U-Pb zircon dating of plutons representing these types. The main results are as follows: the Punta Muret augengneiss is a polymetamorphosed peraluminous granite of anatectic origin. It is 457 +/- 2 Ma old and represents one of the numerous Caledonian orthogneisses of the Alpine basement. All other dated granites are of Late Variscan age. The Cavour leucogranite is an evolved granite of probably calc-alkaline affiliation, dated at 304 +/- 2 Ma. The dioritic and granodioritic facies of the Malanaggio diorite (auct.) are typical calc-alkaline rocks, whose respective age of 290 +/- 2 and 288 +/- 2 Ma overlap within errors. The Sangone and Freidour granite types have very similar alkali-calcic characteristics; their ages are poorly constrained between 267-279 and 268-283 Ma, respectively. The new data for the Dora-Maira granites are in keeping with models of the overall evolution of the Late- to Post-Variscan magmatism in the Alpine area in terms of age distribution and progressive geochemical evolution towards alkaline melts. In a first approximation, granitic rocks across the Variscan belt seem to be increasingly younger towards the internal (southern) parts of the orogen. A Carboniferous, distensive Basin and Range situation is thought to be responsible for the magmatic activity. This tectonic context is comparable to the back-are opening of an active continental margin. The observed southward migration of the magmatism could be linked to the roll-back of the subducting Paleotethyan oceanic plate along the Variscan cordillera.
Resumo:
Cette thèse cible l'étude de la structure thermique de la croûte supérieure (<10km) dans les arcs magmatiques continentaux, et son influence sur l'enregistrement thermochronologique de leur exhumation et de leur évolution topographique. Nous portons notre regard sur deux chaînes de montagne appartenant aux Cordillères Américaines : Les Cascades Nord (USA) et la zone de faille Motagua (Guatemala). L'approche utilisée est axée sur la thermochronologie (U-Th-Sm)/He sur apatite et zircon, couplée avec la modélisation numérique de la structure thermique de la croûte. Nous mettons en évidence la variabilité à la fois spatiale et temporelle du gradient géothermique, et attirons l'attention du lecteur sur l'importance de prendre en compte la multitude des processus géologiques perturbant la structure thermique dans les chaînes de type cordillère, c'est à dire formées lors de la subduction océanique sous un continent.Une nouvelle approche est ainsi développée pour étudier et contraindre la perturbation thermique autour des chambres magmatiques. Deux profiles âge-elevation (U-Th-Sm)/He sur apatite et zircon, ont été collectées 7 km au sud du batholithe de Chilliwack, Cascades Nord. Les résultats montrent une variabilité spatiale et temporelle du gradient géothermique lors de l'emplacement magmatique qui peut être contrainte et séparé de l'exhumation. Durant l'emplacement de l'intrusion, la perturbation thermique y atteint un état d'équilibre (-80-100 °C/km) qui est fonction du flux de magma et de ia distance à la source du magma, puis rejoint 40 °C/km à la fin du processus d'emplacement magmatique.Quelques nouvelles données (U-Th)/He, replacées dans une compilation des données existantes dans les Cascades Nord, indiquent une vitesse d'exhumation constante (-100 m/Ma) dans le temps et l'espace entre 35 Ma et 2 Ma, associée à un soulèvement uniforme de la chaîne contrôlé par l'emplacement de magma dans la croûte durant toute l'activité de l'arc. Par contre, après ~2 Ma, le versant humide de la chaîne est affecté par une accélération des taux d'exhumation, jusqu'à 3 km de croûte y sont érodés. Les glaciations ont un triple effet sur l'érosion de cette chaîne: (1) augmentation des vitesses d'érosion, d'exhumation et de soulèvement la où les précipitations sont suffisantes, (2) limitation de l'altitude contrôlé par la position de Γ Ε LA, (3) élargissement du versant humide et contraction du versant aride de la chaîne.Les modifications des réseaux de drainage sont des processus de surface souvent sous-estimés au profil d'événements climatiques ou tectoniques. Nous proposons une nouvelle approche couplant une analyse géomorphologique, des données thermochronologiques de basse température ((U-Th-Sm)/He sur apatite et zircon), et l'utilisation de modélisation numérique thermo-cinématique pour les mettre en évidence et les dater; nous testons cette approche sur la gorge de la Skagit river dans les North Cascades.De nouvelles données (U-Th)/He sur zircons, complétant les données existantes, montrent que le déplacement horizontal le long de la faille transformante continentale Motagua, la limite des plaques Caraïbe/Amérique du Nord, a juxtaposé un bloc froid, le bloc Maya (s.s.), contre un bloque chaud, le bloc Chortis (s.s.) originellement en position d'arc. En plus de donner des gammes d'âges thermochronologiques très différents des deux côtés de la faille, le déplacement horizontal rapide (~2 cm/a) a produit un fort échange thermique latéral, résultant en un réchauffement du côté froid et un refroidissement du côté chaud de la zone de faille de Motagua.Enfin des données (U-Th-Sm)/He sur apatite témoignent d'un refroidissement Oligocène enregistré uniquement dans la croûte supérieure de la bordure nord de la zone de faille Motagua. Nous tenterons ultérieurement de reproduire ce découplage vertical de la structure thermique par la modélisation de la formation d'un bassin transtensif et de circulation de fluides le long de la faille de Motagua. - This thesis focuses on the influence of the dynamic thermal structure of the upper crust (<10km) on the thermochronologic record of the exhumational and topographic history of magmatic continental arcs. Two mountain belts from the American Cordillera are studied: the North Cascades (USA) and the Motagua fault zone (Guatemala). I use a combined approach coupling apatite and zircon (U-Th-Sm}/He thermochronology and thermo- kinematic numerical modelling. This study highlights the temporal and spatial variability of the geothermal gradient and the importance to take into account the different geological processes that perturb the thermal structure of Cordilleran-type mountain belts (i.e. mountain belts related to oceanic subduction underneath a continent}.We integrate apatite and zircon (U-Th)/He data with numerical thermo-kinematic models to study the relative effects of magmatic and surface processes on the thermal evolution of the crust and cooling patterns in the Cenozoic North Cascades arc (Washington State, USA). Two age-elevation profiles that are located 7 km south of the well-studied Chiliiwack intrusions shows that spatial and temporal variability in geothermal gradients linked to magma emplacement can be contrained and separated from exhumation processes. During Chiliiwack batholith emplacement at -35-20 Ma, the geothermal gradient of the country rocks increased to a very high steady-state value (80-100°C/km), which is likely a function of magma flux and the distance from the magma source area. Including temporally varying geothermal gradients in the analysis allows quantifying the thermal perturbation around magmatic intrusions and retrieving a relatively simple denudation history from the data.The synthesis of new and previously published (U-Th)/He data reveals that denudation of the Northern Cascades is spatially and temporally constant at -100 m/Ma between ~32 and ~2 Ma, which likely reflects uplift due to magmatic crustal thickening since the initiation of the Cenozoic stage of the continental magmatic arc. In contrast, the humid flank of the North Cascades is affected by a ten-fold acceleration in exhumation rate at ~2 Ma, which we interpret as forced by the initiation of glaciations; around 3 km of crust have been eroded since that time. Glaciations have three distinct effects on the dynamics of this mountain range: (1) they increase erosion, exhumation and uplift rates where precipitation rates are sufficient to drive efficient glacial erosion; (2) they efficiently limit the elevation of the range; (3) they lead to widening of the humid flank and contraction of the arid flank of the belt.Drainage reorganizations constitute an important agent of landscape evolution that is often underestimated to the benefit of tectonic or climatic events. We propose a new method that integrates geomorphology, low-temperature thermochronometry (apatite and zircon {U-Th-Sm)/He), and 3D numerical thermal-kinematic modelling to detect and date drainage instability producing recent gorge incision, and apply this approach to the Skagit River Gorge, North Cascades.Two zircon (U-Th)/He age-elevation profiles sampled on both sides of the Motagua Fault Zone (MFZ), the boundary between the North American and the Caribbean plates, combined with published thermochronological data show that strike-slip displacement has juxtaposed the cold Maya block (s.s.) against the hot, arc derived, Chortis block (s.s ), producing different age patterns on both sides of the fault and short-wavelength lateral thermal exchange, resulting in recent heating of the cool side and cooling of the hot side of the MFZ.Finally, an apatite (U-Th-Sm)/He age-elevation profile records rapid cooling at -35 Ma localized only in the upper crust along the northern side of the Motagua fault zone. We will try to reproduce these data by modeling the thermal perturbation resulting from the formation of a transtensional basin and of fluid flow activity along a crustal- scale strike-slip fault.
Resumo:
OBJECTIVE: To examine the relationship between different Internet-use intensities and adolescent mental and somatic health. METHODS: Data were drawn from the 2002 Swiss Multicenter Adolescent Survey on Health, a nationally representative survey of adolescents aged 16 to 20 years in post-mandatory school. From a self-administered anonymous questionnaire, 3906 adolescent boys and 3305 girls were categorized into 4 groups according to their intensity of Internet use: heavy Internet users (HIUs; >2 hours/day), regular Internet users (RIUs; several days per week and <= 2 hours/day), occasional users (<= 1 hour/week), and non-Internet users (NIUs; no use in the previous month). Health factors examined were perceived health, depression, overweight, headaches and back pain, and insufficient sleep. RESULTS: In controlled multivariate analysis, using RIUs as a reference, HIUs of both genders were more likely to report higher depressive scores, whereas only male users were found at increased risk of overweight and female users at increased risk of insufficient sleep. Male NIUs and female NIUs and occasional users also were found at increased risk of higher depressive scores. Back-pain complaints were found predominantly among male NIUs. CONCLUSIONS: Our study provides evidence of a U-shaped relationship between intensity of Internet use and poorer mental health of adolescents. In addition, HIUs were confirmed at increased risk for somatic health problems. Thus, health professionals should be on the alert when caring for adolescents who report either heavy Internet use or very little/none. Also, they should consider regular Internet use as a normative behavior without major health consequence. Pediatrics 2011;127:e330-e335
Resumo:
We have selected and dated three contrasting rock-types representative of the magmatic activity within the Permian layered mafic complex of Mont Collon, Austroalpine Dent Blanche nappe, Western Alps. A pegmatitic gabbro associated to the main cumulus sequence yields a concordant U/Pb zircon age of 284.2 +/- 0.6 Ma, whereas a pegmatitic granite dike crosscutting the latter yields a concordant age of 282.9 +/- 0.6 Ma. A Fe-Ti-rich ultrabasic lamprophyre, crosscutting all other lithologies of the complex, yields an 40Ar/39Ar plateau age of 260.2 +/- 0.7 Ma on a kaersutite concentrate. All ages are interpreted as magmatic. Sub-contemporaneous felsic dikes within the Mont Collon complex are ascribed to anatectic back-veining from the country-rock, related to the emplacement of the main gabbroic body in the continental crust, which is in accordance with new isotopic data. The lamprophyres have isotopic compositions typical of a depleted mantle, in contrast to those of the cumulate gabbros, close to values of the Bulk Silicate Earth. This indicates either contrasting sources for the two magma pulses - the subcontinental lithospheric mantle for the gabbros and the underlying asthenosphere for the lamprophyres - or a single depleted lithospheric source with variable degrees of crustal contamination of the gabbroic melts during their emplacement in the continental crust. The Mont Collon complex belongs to a series of Early Permian mafic massifs, which emplaced in a short time span about 285-280 Ma ago, in a limited sector of the post-Variscan continental crust now corresponding to the Austroalpine/ Southern Alpine domains and Corsica. This magmatic activity was controlled in space and time by crustal-scale transtensional shear zones.
Resumo:
OBJECTIVE: Studies of major depression in twins and families have shown moderate to high heritability, but extensive molecular studies have failed to identify susceptibility genes convincingly. To detect genetic variants contributing to major depression, the authors performed a genome-wide association study using 1,636 cases of depression ascertained in the U.K. and 1,594 comparison subjects screened negative for psychiatric disorders. METHOD: Cases were collected from 1) a case-control study of recurrent depression (the Depression Case Control [DeCC] study; N=1346), 2) an affected sibling pair linkage study of recurrent depression (probands from the Depression Network [DeNT] study; N=332), and 3) a pharmacogenetic study (the Genome-Based Therapeutic Drugs for Depression [GENDEP] study; N=88). Depression cases and comparison subjects were genotyped at Centre National de Génotypage on the Illumina Human610-Quad BeadChip. After applying stringent quality control criteria for missing genotypes, departure from Hardy-Weinberg equilibrium, and low minor allele frequency, the authors tested for association to depression using logistic regression, correcting for population ancestry. RESULTS: Single nucleotide polymorphisms (SNPs) in BICC1 achieved suggestive evidence for association, which strengthened after imputation of ungenotyped markers, and in analysis of female depression cases. A meta-analysis of U.K. data with previously published results from studies in Munich and Lausanne showed some evidence for association near neuroligin 1 (NLGN1) on chromosome 3, but did not support findings at BICC1. CONCLUSIONS: This study identifies several signals for association worthy of further investigation but, as in previous genome-wide studies, suggests that individual gene contributions to depression are likely to have only minor effects, and very large pooled analyses will be required to identify them.