31 resultados para Microwave-assisted synthesis
Resumo:
PIDD has been implicated in survival and apoptotic pathways in response to DNA damage, and a role for PIDD was recently identified in non-homologous end-joining (NHEJ) repair induced by γ-irradiation. Here, we present an interaction of PIDD with PCNA, first identified in a proteomics screen. PCNA has essential functions in DNA replication and repair following UV irradiation. Translesion synthesis (TLS) is a process that prevents UV irradiation-induced replication blockage and is characterized by PCNA monoubiquitination and interaction with the TLS polymerase eta (polη). Both of these processes are inhibited by p21. We report that PIDD modulates p21-PCNA dissociation, and promotes PCNA monoubiquitination and interaction with polη in response to UV irradiation. Furthermore, PIDD deficiency leads to a defect in TLS that is associated, both in vitro and in vivo, with cellular sensitization to UV-induced apoptosis. Thus, PIDD performs key functions upon UV irradiation, including TLS, NHEJ, NF-κB activation and cell death.
Resumo:
Acetabular cup orientation is a key factor determining hip stability, and standard mechanical guides have shown little help in improving alignment. An in vitro study was carried out to compare the accuracy and precision of a new gravity-assisted guidance system with a standard mechanical guide. Three hundred ten cups were impacted by 5 surgeons, and the final cup orientation was measured. With the new guide, the average error in anteversion was 0.4 degrees , compared with 10.4 degrees with the standard guide and 0.3 degrees and -4.7 degrees , respectively, for abduction angles. The average time required for orienting the cups was similar for both guides. The accuracy and reproducibility obtained with the new guide were better (P < .0001). These good results would require a clinical validation.
Resumo:
A glucocorticoid-responsive vector is described which allows for the highly inducible expression of complementary DNAs (cDNAs) in stably transfected mammalian cell lines. This vector, pLK-neo, composed of a variant mouse mammary tumor virus long terminal repeat promoter, containing a hormone regulatory element, a Geneticin resistance-encoding gene in a simian virus 40 transcription unit, and a polylinker insertion site for heterologous cDNAs, was used to express the polymeric immunoglobulin (poly-Ig) receptor and the thymocyte marker, Thy-1, in Madin-Darby canine kidney (MDCK) cells and in murine fibroblast L cells. A high level of poly-Ig receptor or Thy-1 mRNA accumulation was observed in MDCK cells in response to dexamethasone with a parallel ten- to 200-fold increase in protein synthesis depending on the recombinant protein and the transfected cell clone.
Synthesis and characterization of a new class of anti-angiogenic agents based on ruthenium clusters.
Resumo:
New triruthenium-carbonyl clusters derivatized with glucose-modified bicyclophosphite ligands have been synthesized. These compounds were found to have cytostatic and cytotoxic activity and depending on the number of bicyclophosphite ligands, and could be tuned for either anti-cancer or specific anti-angiogenic activity. While some compounds had a broad cellular toxicity profile in several cell types others showed endothelial cell specific dose-dependent anti-proliferative and anti-migratory efficacy. A profound inhibition of angiogenesis was also observed in the in vivo chicken chorioallantoic membrane (CAM) model, and consequently, these new compounds have considerable potential in drug design, e.g. for the treatment of cancer.
Resumo:
Rapport de Synthèse : Un sevrage lent comme méthode élective pour l'interruption de la méthadone est coûteux en termes de temps, le plus souvent associé à un taux élevé d'abandon. Bien que les méthodes ultrarapides de désintoxication des opiacés aient gagné en popularité récemment, elles sont chères et posent les problèmes spécifiques liés aux patients traités par la méthadone. Méthodologie: ont été inclus dans l'étude dix patients en traitement de substitution avec de la méthadone. La dernière dose de méthadone a été administrée le matin même du jour de l'admission, en préalable à l'hospitalisation. Les médicaments suivants ont été administrés le jour suivant l'admission: ondansetron 36mg, ranitidine 40mg, loperamide 8m., clonazepam 4m., promazine 1OOmg, metoclopramide 70mg, naltrexone 5Omg. L'échelle objective de sevrage des opiacés (Objective Opiate Withdrawal Scale) a été appliquée au deuxième, troisième et quatrième jour d'hospitalisation, deux fois par jour, à 8h00 et 18h00. Un suivi a été réalisé sous la forme d'entretiens téléphoniques pendant une semaine, respectivement six mois après la date de sortie de l'hôpital, faisant suite à la désintoxication. Un autre entretient téléphonique a été réalisé dans les six mois suivant le "post-sevrage", avec pour objectif d'investiguer la continuité du traitément, une éventuelle rechute dans l'abus de drogues et une possible réintroduction de la méthadone. Résultats: nous avons pu déterminer quatre groupes de symptômes, sur la base d'une observation de trois jours d'évolution: 1) Les signes typiques du syndrome de sevrage de retrait des opiacés, symptôme de froid et chaud, pilo-érection, anxiété caractérisée par une intensité initiale élevée et une disparition relativement continue. 2) Hyperactivité neurovégétative caractérisée par une intensité initiale élevée et une rapide disparition. 3) Phénomènes neurovégétatifs dont l'intensité s'est maintenue durant toute la période d'observation. 4) Contractions musculaires, insomnies et anorexie, manque d'appétit, réapparaissant chez certains patients au 2ème et au début du 3ème jour. Conclusions: une procédure courte de désintoxication utilisant une dose unique de naltrexone s'avère être une méthode alternative valable pour un sevrage de la méthadone. Cette méthode semble accélérer et écourter la symptomatologie associée au sevrage. Le cours des symptômes peut être interprété comme biphasique. Une première phase de retrait est éminemment caractérisée par tous les symptômes typiques eux-mêmes et probablement induits par la naltrexone. La seconde phase, pour un plus petit nombre de patients, peut être interprétée comme en corrélation avec une concentration de méthadone en diminution significative ultérieurement.
Resumo:
A new metabolite profiling approach combined with an ultrarapid sample preparation procedure was used to study the temporal and spatial dynamics of the wound-induced accumulation of jasmonic acid (JA) and its oxygenated derivatives in Arabidopsis thaliana. In addition to well known jasmonates, including hydroxyjasmonates (HOJAs), jasmonoyl-isoleucine (JA-Ile), and its 12-hydroxy derivative (12-HOJA-Ile), a new wound-induced dicarboxyjasmonate, 12-carboxyjasmonoyl-l-isoleucine (12-HOOCJA-Ile) was discovered. HOJAs and 12-HOOCJA-Ile were enriched in the midveins of wounded leaves, strongly differentiating them from the other jasmonate metabolites studied. The polarity of these oxylipins at physiological pH correlated with their appearance in midveins. When the time points of accumulation of different jasmonates were determined, JA levels were found to increase within 2-5 min of wounding. Remarkably, these changes occurred throughout the plant and were not restricted to wounded leaves. The speed of the stimulus leading to JA accumulation in leaves distal to a wound is at least 3 cm/min. The data give new insights into the spatial and temporal accumulation of jasmonates and have implications in the understanding of long-distance wound signaling in plants.
Resumo:
Metabolic engineering of plants allows the possibility of using crops for the synthesis of novel polymers having useful material properties. Strong and flexible protein-based polymers, which are based on the structure of silk and elastin have been synthesized in transgenic plants. A wide range of polyhydroxyalkanoates having properties ranging from stiff plastics to soft elastomers and glues have been synthesized in various compartments of plants, such as the cytoplasm, plastid and peroxisome. These plant biomaterials could replace, in part, the synthetic plastics, fibers and elastomers produced from petroleum, thus offering the advantage of renewability, sustainability and biodegradability.
Resumo:
Polyphosphate (polyP) occurs ubiquitously in cells, but its functions are poorly understood and its synthesis has only been characterized in bacteria. Using x-ray crystallography, we identified a eukaryotic polyphosphate polymerase within the membrane-integral vacuolar transporter chaperone (VTC) complex. A 2.6 angstrom crystal structure of the catalytic domain grown in the presence of adenosine triphosphate (ATP) reveals polyP winding through a tunnel-shaped pocket. Nucleotide- and phosphate-bound structures suggest that the enzyme functions by metal-assisted cleavage of the ATP gamma-phosphate, which is then in-line transferred to an acceptor phosphate to form polyP chains. Mutational analysis of the transmembrane domain indicates that VTC may integrate cytoplasmic polymer synthesis with polyP membrane translocation. Identification of the polyP-synthesizing enzyme opens the way to determine the functions of polyP in lower eukaryotes.
Resumo:
Sequence homologies suggest that the Bacillus subtilis 168 tagO gene encodes UDP-N-acetylglucosamine:undecaprenyl-P N-acetylglucosaminyl 1-P transferase, the enzyme responsible for catalysing the first step in the synthesis of the teichoic acid linkage unit, i.e. the formation of undecaprenyl-PP-N-acetylglucosamine. Inhibition of tagO expression mediated by an IPTG-inducible P(spac) promoter led to the development of a coccoid cell morphology, a feature characteristic of mutants blocked in teichoic acid synthesis. Indeed, analyses of the cell-wall phosphate content, as well as the incorporation of radioactively labelled precursors, revealed that the synthesis of poly(glycerol phosphate) and poly(glucosyl N-acetylgalactosamine 1-phosphate), the two strain 168 teichoic acids known to share the same linkage unit, was affected. Surprisingly, under phosphate limitation, deficiency of TagO precludes the synthesis of teichuronic acid, which is normally induced under these conditions. The regulatory region of tagO, containing two partly overlapping sigma(A)-controlled promoters, is similar to that of sigA, the gene encoding the major sigma factor responsible for growth. Here, the authors discuss the possibility that TagO may represent a pivotal element in the multi-enzyme complexes responsible for the synthesis of anionic cell-wall polymers, and that it may play one of the key roles in balanced cell growth.
Resumo:
Migmatites produced by low-pressure anatexis of basic dykes are found in a contact metamorphic aureole around a pyroxenite-gabbro intrusion (PX2), on Fuerteventura. Dykes outside and inside the aureole record interaction with meteoric water, with low or negative delta O-18 whole-rock values (+0.2 to -3.4 parts per thousand), decreasing towards the contact. Recrystallised plagioclase, diopside, biotite and oxides, from within the aureole, show a similar evolution with lowest delta O-18 values (-2.8, -4.2, - 4.4 and -7.6 parts per thousand, respectively) in the migmatite zone, close to the intrusion. Relict clinopyroxene phenocrysts preserved in all dykes, retain typically magmatic delta O-18 values up to the anatectic zone, where the values are lower and more heterogeneous. Low delta O-18 values, decreasing towards the intrusion, can be ascribed to the advection of meteoric water during magma emplacement, with increasing fluid/rock ratios (higher dyke intensities towards the intrusion acting as fluid-pathways) and higher temperatures promoting increasing exchange during recrystallisation.
Resumo:
In Pseudomonas aeruginosa, the small RNA-binding, regulatory protein RsmA is a negative control element in the formation of several extracellular products (e.g., pyocyanin, hydrogen cyanide, PA-IL lectin) as well as in the production of N-acylhomoserine lactone quorum-sensing signal molecules. RsmA was found to control positively the ability to swarm and to produce extracellular rhamnolipids and lipase, i.e., functions contributing to niche colonization by P. aeruginosa. An rsmA null mutant was entirely devoid of swarming but produced detectable amounts of rhamnolipids, suggesting that factors in addition to rhamnolipids influence the swarming ability of P. aeruginosa. A small regulatory RNA, rsmZ, which antagonized the effects of RsmA, was identified in P. aeruginosa. Expression of the rsmZ gene was dependent on both the global regulator GacA and RsmA, increased with cell density, and was subject to negative autoregulation. Overexpression of rsmZ and a null mutation in rsmA resulted in quantitatively similar, negative or positive effects on target genes, in agreement with a model that postulates titration of RsmA protein by RsmZ RNA.
Resumo:
The synthesis of poly(RboP), the main Bacillus subtilis W23 teichoic acid, is encoded by tarDF-tarABIJKL operons, the latter being controlled by two promoters designated PtarA-int and PtarA-ext. Analysis by lacZ fusions reveals that PtarA-int activity exhibits sharp increases at the beginning and end of the transition between exponential and stationary growth phase. As confirmed by mRNA quantification, these increases are mediated by ECF sigma factors sigmaX and sigmaM respectively. In liquid media, strain W23 sigX sigM double mutants experience serious difficulties in the transition and stationary growth phases. Inactivation of sigmaX- and sigmaM-controlled regulons, which precludes transcription from PtarA-int, leads to (i) delays in chromosome segregation and septation and (ii) a transient loss of up to 30% of the culture OD or lysis. However, specific inactivation of PtarA-int, leading mainly to a shortage of poly(RboP), does not affect growth while, nevertheless, interfering with normal septation, as revealed by electron microscopy. The different sigM transcription in strains W23 and 168 is discussed. In W23, expression of tarA and sigM, which is shown to control divIC, is inversely correlated with growth rate, suggesting that the sigM regulon is involved in the control of cell division.