29 resultados para Meteorological instruments
Resumo:
The study assesses firstly the evaluation process of the first generation of asylum instruments while underlining the possibilities to improve it. It analyses secondly the asylum "acquis" regarding distribution of refugees between Member States, the eligibility for protection, the status of protected persons regarding detention and vulnerability, asylum procedures and the external dimension by formulating short-term recommendations of each area. Its last part is devoted to the long term evolution of the Common European Asylum System regarding the legal context including the accession of the EU to the Geneva Convention, the institutional perspectives including the new European Support Office, the jurisdictional perspective, the substantive perspective, the distributive perspective and the external perspective.
Resumo:
Trois psychologues de l'Université de Lausanne, Sophie Perdrix, Linda Charvoz et Jérôme Rossier, abordent dans leur article la relation complexe que le psychologue entretient avec les évaluations psychologiques. Ils plaident en faveur d'une utilisation respectueuse des différences individuelles des instruments d'évaluation et mettent en garde contre leurs aspects réductionnistes.
Resumo:
Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.
Resumo:
Background: Primary care physicians are often requested to assess their patients' fitness to drive. Little is however known on their needs to help them in this task. Aims: The aim of this study is to develop theories on needs, expectations, and barriers for clinical instruments helping physicians assess fitness to drive in primary care. Methods: This qualitative study used semi-structured interviews to investigate needs and expectations for instruments used to assess fitness to drive. From August 2011 to April 2013, we recorded opinions from five experts in traffic medicine, five primary care physicians, and five senior drivers. All interviews were integrally transcribed. Two independent researchers extracted, coded, and stratified categories relying on multi-grounded theory. All participants validated the final scheme. Results: Our theory suggests that for an instruments assessing fitness to drive to be implemented in primary care, it need to contribute to the decisional process. This requires at least five conditions: 1) it needs to reduce the range of uncertainty, 2) it needs to be adapted to local resources and possibilities, 3) it needs to be accepted by patients, 4) choices of tasks need to adaptable to clinical conditions, 5) and interpretation of results need to remain dependant of each patient's context. Discussion and conclusions: Most existing instruments assessing fitness to drive are not designed for primary care settings. Future instruments should also aim to support patient-centred dialogue, help anticipate driving cessation, and offer patients the opportunity to freely take their own decision on driving cessation as often as possible.
Resumo:
Cette thèse vise à apporter des éléments concrets permettant d'évaluer l'efficacité et la pertinence de la nouvelle gestion publique (NGP) dans le contexte de l'assurance-chômage en Suisse. Ancrée dans une approche des politiques publiques partant de ces dernières telles qu'elles sont mises en oeuvre plutôt que de ce qu'elles devraient être, elle s'attache à observer l'impact d'une catégorie spécifique d'instruments de gestion caractéristiques de la NGP, les instruments de redevabilité. La redevabilité désigne la nécessité ou l'obligation qu'ont des individus ou des organisations de rendre compte de leurs activités, d'en accepter la responsabilité et d'en exposer les résultats de façon transparente. À partir d'un matériau empirique constitué d'entretiens semi-directifs et d'observations participantes et non-participantes, complété par l'analyse d'un corpus documentaire varié, elle répond à cinq questions de recherche liant les agents de base, les managers qui les encadrent et les instruments gestionnaires de redevabilité. Ces questions concernent les effets réels, désirés ou non, des instruments gestionnaires encadrant la mise en oeuvre des politiques d'insertion socioprofessionnelle. Elles permettent également d'évaluer la pertinence des instruments de la NGP au regard de l'objectif général d'amélioration de la qualité du service aux usagers. En résumé, les instruments étudiés incitent les managers et les agents à la conformité (légale et budgétaire) et entraînent des conséquences inattendues limitant l'efficacité des interventions, ce qui met en question la pertinence du lien entre NGP et qualité du service rendu aux usagers. Les résultats obtenus font également ressortir l'importance d'étudier l'ensemble de la chaîne d'exécution des politiques publiques en tenant compte des interactions entre niveaux.