235 resultados para Metabolic process
Resumo:
Body composition, resting energy expenditure (REE), and whole body protein metabolism were studied in 26 young and 28 elderly Gambian men matched for body mass index during the dry season in a rural village in The Gambia. REE was measured by indirect calorimetry (hood system) in the fasting state and after five successive meals. Rates of whole body nitrogen flux, protein synthesis, and protein breakdown were determined in the fed state from the level of isotopic enrichment of urinary ammonia over a period of 12 h after a single oral dose of [15N]glycine. Expressed in absolute value, REE was significantly lower in the elderly compared with the young group (3.21 +/- 0.07 vs. 4.04 +/- 0.07 kJ/min, P < 0.001) and when adjusted to body weight (3.29 +/- 0.05 vs. 3.96 +/- 0.05 kJ/min, P < 0.0001) and fat-free mass (FFM; 3.38 +/- 0.01 vs. 3.87 +/- 0.01 kJ/min, P < 0.0001). The rate of protein synthesis averaged 207 +/- 13 g protein/day in the elderly and 230 +/- 13 g protein/day in the young group, whereas protein breakdown averaged 184 +/- 13 g protein/day in the elderly and 203 +/- 13 g protein/day in the young group (nonsignificant). When values were adjusted for body weight or FFM, they did not reveal any difference between the two groups. It is concluded that the reduced REE adjusted for body composition observed in elderly Gambian men is not explained by a decrease in protein turnover.
Resumo:
In rats, neonatal treatment with monosodium L-glutamate (MSG) induces several metabolic and neuroendocrine abnormalities, which result in hyperadiposity. No data exist, however, regarding neuroendocrine, immune and metabolic responses to acute endotoxemia in the MSG-damaged rat. We studied the consequences of MSG treatment during the acute phase response of inflammatory stress. Neonatal male rats were treated with MSG or vehicle (controls, CTR) and studied at age 90 days. Pituitary, adrenal, adipo-insular axis, immune, metabolic and gonadal functions were explored before and up to 5 h after single sub-lethal i.p. injection of bacterial lipopolysaccharide (LPS; 150 microg/kg). Our results showed that, during the acute phase response of inflammatory stress in MSG rats: (1) the corticotrope-adrenal, leptin, insulin and triglyceride responses were higher than in CTR rats, (2) pro-inflammatory (TNFalpha) cytokine response was impaired and anti-inflammatory (IL-10) cytokine response was normal, and (3) changes in peripheral estradiol and testosterone levels after LPS varied as in CTR rats. These data indicate that metabolic and neroendocrine-immune functions are altered in MSG-damaged rats. Our study also suggests that the enhanced corticotrope-corticoadrenal activity in MSG animals could be responsible, at least in part, for the immune and metabolic derangements characterizing hypothalamic obesity.
Resumo:
The metabolic and respiratory effects of intravenous 0.5 M sodium acetate (at a rate of 2.5 mmol/min during 120 min) were studied in nine normal human subjects. O2 consumption (VO2) and CO2 production (VCO2) were measured continuously by open-circuit indirect calorimetry. VO2 increased from 251 +/- 9 to 281 +/- 9 ml/min (P < 0.001), energy expenditure increased from 4.95 +/- 0.17 kJ/min baseline to 5.58 +/- 0.16 kJ/min (P < 0.001), and VCO2 decreased nonsignificantly (211 +/- 7 ml/min vs. 202 +/- 7 ml/min, NS). The extrapulmonary CO2 loss (i.e., bicarbonate generation and excretion) was estimated at 48 +/- 5 ml/min. This observation is consistent with 1 mol of bicarbonate generated from 1 mol of acetate metabolized. Alveolar ventilation decreased from 3.5 +/- 0.2 l/min basal to 3.1 +/- 0.2 l/min (P < 0.001). The minute ventilation (VE) to VO2 ratio decreased from 22.9 +/- 1.3 to 17.6 +/- 0.9 l/l (P < 0.005), arterial PO2 decreased from 93.2 +/- 1.9 to 78.7 +/- 1.6 mmHg (P < 0.0001), arterial PCO2 increased from 39.2 +/- 0.7 to 42.1 +/- 1.1 mmHg (P < 0.0001), pH from 7.40 +/- 0.005 to 7.50 +/- 0.007 (P < 0.005), and arterial bicarbonate concentration from 24.2 +/- 0.7 to 32.9 +/- 1.1 (P < 0.0001). These observations indicate that sodium acetate infusion results in substantial extrapulmonary CO2 loss, which leads to a relative decrease of total and alveolar ventilation.
Resumo:
Synthetic chemicals currently used in a variety of industrial and agricultural applications are leading to widespread contamination of the environment. Even though the intended uses of pesticides, plasticizers, antimicrobials, and flame retardants are beneficial, effects on human health are a global concern. These so-called endocrine-disrupting chemicals (EDCs) can disrupt hormonal balance and result in developmental and reproductive abnormalities. New in vitro, in vivo, and epidemiological studies link human EDC exposure with obesity, metabolic syndrome, and type 2 diabetes. Here we review the main chemical compounds that may contribute to metabolic disruption. We then present their demonstrated or suggested mechanisms of action with respect to nuclear receptor signaling. Finally, we discuss the difficulties of fairly assessing the risks linked to EDC exposure, including developmental exposure, problems of high- and low-dose exposure, and the complexity of current chemical environments.
Resumo:
BACKGROUND: Multiple interventions were made to optimize the medication process in our intensive care unit (ICU). 1 Transcriptions from the medical order form to the administration plan were eliminated by merging both into a single document; 2 the new form was built in a logical sequence and was highly structured to promote completeness and standardization of information; 3 frequently used drug names, approved units, and fixed routes were pre-printed; 4 physicians and nurses were trained with regard to the correct use of the new form. This study was aimed at evaluating the impact of these interventions on clinically significant types of medication errors. METHODS: Eight types of medication errors were measured by a prospective chart review before and after the interventions in the ICU of a public tertiary care hospital. We used an interrupted time-series design to control the secular trends. RESULTS: Over 85 days, 9298 lines of drug prescription and/or administration to 294 patients, corresponding to 754 patient-days were collected and analysed for the three series before and three series following the intervention. Global error rate decreased from 4.95 to 2.14% (-56.8%, P < 0.001). CONCLUSIONS: The safety of the medication process in our ICU was improved by simple and inexpensive interventions. In addition to the optimization of the prescription writing process, the documentation of intravenous preparation, and the scheduling of administration, the elimination of the transcription in combination with the training of users contributed to reducing errors and carried an interesting potential to increase safety.
Resumo:
The level of information provided by ink evidence to the criminal and civil justice system is limited. The limitations arise from the weakness of the interpretative framework currently used, as proposed in the ASTM 1422-05 and 1789-04 on ink analysis. It is proposed to use the likelihood ratio from the Bayes theorem to interpret ink evidence. Unfortunately, when considering the analytical practices, as defined in the ASTM standards on ink analysis, it appears that current ink analytical practices do not allow for the level of reproducibility and accuracy required by a probabilistic framework. Such framework relies on the evaluation of the statistics of the ink characteristics using an ink reference database and the objective measurement of similarities between ink samples. A complete research programme was designed to (a) develop a standard methodology for analysing ink samples in a more reproducible way, (b) comparing automatically and objectively ink samples and (c) evaluate the proposed methodology in a forensic context. This report focuses on the first of the three stages. A calibration process, based on a standard dye ladder, is proposed to improve the reproducibility of ink analysis by HPTLC, when these inks are analysed at different times and/or by different examiners. The impact of this process on the variability between the repetitive analyses of ink samples in various conditions is studied. The results show significant improvements in the reproducibility of ink analysis compared to traditional calibration methods.
Resumo:
A metabolic hypothesis is presented for insulin resistance in obesity, in the presence or absence of Type 2 (non-insulin-dependent) diabetes mellitus. It is based on physiological mechanisms including a series of negative feed-back mechanisms, with the inhibition of the function of the glycogen cycle in skeletal muscle as a consequence of decreased glucose utilization resulting from increased lipid oxidation in the obese. It considers the inhibition of glycogen synthase activity together with inhibition of glucose storage and impaired glucose tolerance. The prolonged duration of increased lipid oxidation, considered as the initial cause, may lead to Type 2 diabetes. This hypothesis is compatible with others based on the inhibition of insulin receptor kinase and of glucose transporter activities.
Resumo:
Immunocompetent microglia play an important role in the pathogenesis of Alzheimer's disease (AD). Antimicroglial antibodies in the cerebrospinal fluid (CSF) in clinically diagnosed AD patients have been previously recorded. Here, we report the results of the analysis of the CSF from 38 autopsy cases: 7 with definite AD; 14 with mild and 10 with moderate Alzheimer's type pathology; and 7 controls. Antimicroglial antibodies were identified in 70% of patients with definite AD, in 80% of patients with moderate and in 28% of patients with mild Alzheimer's type pathology. CSF antimicroglial antibodies were not observed in any of the control cases. The results show that CSF antimicroglial antibodies are present in the majority of patients with definite AD and also in cases with moderate Alzheimer's type changes. They may also indicate dysregulation of microglial function. Together with previous observations, these findings indicate that compromised immune defense mechanisms play an important role in the pathogenesis of AD.
Resumo:
For several years, all five medical faculties of Switzerland have embarked on a reform of their training curricula for two reasons: first, according to a new federal act issued in 2006 by the administration of the confederation, faculties needed to meet international standards in terms of content and pedagogic approaches; second, all Swiss universities and thus all medical faculties had to adapt the structure of their curriculum to the frame and principles which govern the Bologna process. This process is the result of the Bologna Declaration of June 1999 which proposes and requires a series of reforms to make European Higher Education more compatible and comparable, more competitive and more attractive for Europeans students. The present paper reviews some of the results achieved in the field, focusing on several issues such as the shortage of physicians and primary care practitioners, the importance of public health, community medicine and medical humanities, and the implementation of new training approaches including e-learning and simulation. In the future, faculties should work on several specific challenges such as: students' mobility, the improvement of students' autonomy and critical thinking as well as their generic and specific skills and finally a reflection on how to improve the attractiveness of the academic career, for physicians of both sexes.
Resumo:
Background: The metabolic syndrome (MS) represents a cluster of metabolic disorders that predicts diabetes and cardiovascular disease. Several definitions exist and further descriptive and prospective data are needed to compare these definitions and their significance in different populations. Objective: We examined, in a country of the African region, i) the prevalence of MS according to three major definitions (ATP, IDF, WHO); ii) the contribution of individual MS components; and iii) the agreement between the three considered definitions. We also examined the prevalence among diabetics and non-diabetics. Methods: We conducted an examination survey in a sample representative of the general population aged 25-64 of the Seychelles (Indian Ocean, African region), attended by 1255 persons (participation rate of 80.2%). Results: The prevalence of MS was similar with either definition of MS in men (24%--25%) but differed in women (WHO: 25%, ATP: 32%; IDF: 35%). Upon exclusion of diabetic persons, the prevalence was 5-10% lower for all three MS definitions: most diabetic persons had MS although a substantial proportion of diabetic men aged 45--64 did not have MS. The following components were found most often among persons with MS: 90% had high blood pressure (HBP) and 78% had obesity (ATP); 95% had obesity and 84% had HBP (WHO), and 89% had HBP and 75% had impaired glucose regulation (IDF) - not considering impaired glucose regulation and obesity that are compulsory components of the WHO and IDF definitions, respectively. Among persons with MS based on either of the three definitions (37% of total population), less than 80% met both ATP and IDF criteria, 67% both WHO and IDF criteria, 54% both WHO and ATP criteria and only 37% met all three definitions. Conclusion: We found a fairly high prevalence of MS in an African population. However, because there was only poor agreement between the 3 MS definitions, the fairly similar proportions of MS based on ATP, IDF or WHO definitions identified, to a substantial extent, different subjects as having MS.
Resumo:
The prevalence of complicated hypertension is increasing in America and Europe. This survey was undertaken to assess the status quo of primary care management of hypertension in patients with the high-risk comorbid diseases metabolic syndrome (MetS) and/or type 2 diabetes mellitus (non-insulin depending diabetes mellitus (NIDDM)). Data of anti-hypertensive treatment of 4594 Swiss patients were collected over 1 week. We identified patients with exclusively NIDDM (N = 95), MetS (N = 168), and both (N = 768). Target blood pressure (TBP) attainment, frequency of prescribed substance-classes, and correlations to comorbidities/end-organ damages were assessed. In addition, we analyzed the prescription of unfavorable beta-blockers (BB) and high-dose diuretics (Ds). In NIDDM, Ds (61%), angiotensin receptor blockers (ARBs) (40%), and angiotensin converting enzyme inhibitors (ACEIs) (31%) were mostly prescribed, while in MetS, drugs prevalence was Ds (68%), ARBs (48%), and BB (41%). Polypharmacy in patients with MetS correlated with body mass index; older patients (>65 years) were more likely to receive dual-free combinations. TBP was attained in 25.2% of NIDDM and in 28.7% of MetS patients. In general, low-dose Ds use was more prevalent in NIDDM and MetS, however, overall, Ds were used excessively (NIDDM: 61%, MetS: 68%), especially in single-pill combination. Patients with MetS were more likely to receive ARBs, ACEIs, CCBs, and low-dose Ds than BBs and/or high-dose Ds. Physicians recognize DM and MetS as high-risk patients, but select inappropriate drugs. Because the majority of patients may have both, MetS and NIDDM, there is an unmet need to define TBP for this specific population considering the increased risk in comparison to patients with MetS or NIDDM alone.
Resumo:
The timing and quality of both sleep and wakefulness are thought to be regulated by the interaction of two processes. One of these two processes keeps track of the prior sleep-wake history and controls the homeostatic need for sleep while the other sets the time-of-day that sleep preferably occurs. The molecular pathways underlying the latter, circadian process have been studied in detail and their key role in physiological time-keeping has been well established. Analyses of sleep in mice and flies lacking core circadian clock gene proteins have demonstrated, however, that besides disrupting circadian rhythms, also sleep homeostatic processes were affected. Subsequent studies revealed that sleep loss alters both the mRNA levels and the specific DNA-binding of the key circadian transcriptional regulators to their target sequences in the mouse brain. The fact that sleep loss impinges on the very core of the molecular circadian circuitry might explain why both inadequate sleep and disrupted circadian rhythms can similarly lead to metabolic pathology. The evidence for a role for clock genes in sleep homeostasis will be reviewed here.