29 resultados para Memetic algorithm
Resumo:
BACKGROUND: Surveillance of multiple congenital anomalies is considered to be more sensitive for the detection of new teratogens than surveillance of all or isolated congenital anomalies. Current literature proposes the manual review of all cases for classification into isolated or multiple congenital anomalies. METHODS: Multiple anomalies were defined as two or more major congenital anomalies, excluding sequences and syndromes. A computer algorithm for classification of major congenital anomaly cases in the EUROCAT database according to International Classification of Diseases (ICD)v10 codes was programmed, further developed, and implemented for 1 year's data (2004) from 25 registries. The group of cases classified with potential multiple congenital anomalies were manually reviewed by three geneticists to reach a final agreement of classification as "multiple congenital anomaly" cases. RESULTS: A total of 17,733 cases with major congenital anomalies were reported giving an overall prevalence of major congenital anomalies at 2.17%. The computer algorithm classified 10.5% of all cases as "potentially multiple congenital anomalies". After manual review of these cases, 7% were agreed to have true multiple congenital anomalies. Furthermore, the algorithm classified 15% of all cases as having chromosomal anomalies, 2% as monogenic syndromes, and 76% as isolated congenital anomalies. The proportion of multiple anomalies varies by congenital anomaly subgroup with up to 35% of cases with bilateral renal agenesis. CONCLUSIONS: The implementation of the EUROCAT computer algorithm is a feasible, efficient, and transparent way to improve classification of congenital anomalies for surveillance and research.
Resumo:
The atomic force microscope is not only a very convenient tool for studying the topography of different samples, but it can also be used to measure specific binding forces between molecules. For this purpose, one type of molecule is attached to the tip and the other one to the substrate. Approaching the tip to the substrate allows the molecules to bind together. Retracting the tip breaks the newly formed bond. The rupture of a specific bond appears in the force-distance curves as a spike from which the binding force can be deduced. In this article we present an algorithm to automatically process force-distance curves in order to obtain bond strength histograms. The algorithm is based on a fuzzy logic approach that permits an evaluation of "quality" for every event and makes the detection procedure much faster compared to a manual selection. In this article, the software has been applied to measure the binding strength between tubuline and microtubuline associated proteins.
Resumo:
Background: The first AO comprehensive pediatric long bone fracture classification system has been established following a structured path of development and validation with experienced pediatric surgeons. Methods: A follow-up series of agreement studies was applied to specify and evaluate a grading system for displacement of pediatric supracondylar fractures. An iterative process comprising an international group of 5 experienced pediatric surgeons (Phase 1) followed by a pragmatic multicenter agreement study involving 26 raters (Phase 2) was used. The last evaluations were conducted on a consecutive collection of 154 supracondylar fractures documented by standard anteroposterior and lateral radiographs. Results: Fractures were classified according to 1 of 4 grades: I = incomplete fracture with no or minimal displacement; II = Incomplete fracture with continuity of the posterior (extension fracture) or anterior cortex (flexion fracture); III = lack of bone continuity (broken cortex), but still some contact between the fracture planes; IV = complete fracture with no bone continuity (broken cortex), and no contact between the fracture planes. A diagnostic algorithm to support the practical application of the grading system in a clinical setting, as well as an aid using a circle placed over the capitellum was proposed. The overall kappa coefficients were 0.68 and 0.61 in the Phase 1 and Phase 2 studies, respectively. In the Phase 1 study, fracture grades I, II, III, and IV were classified with median accuracies of 91%, 82%, 83%, and 99.5%, respectively. Similar median accuracies of 86% (Grade I), 73% (Grade II), 83%(Grade III), and 92% were reported for the Phase 2 study. Reliability was high in distinguishing complete, unstable fractures from stable injuries [ie, kappa coefficients of 0.84 (Phase 1) and 0.83 (Phase 2) were calculated]; in Phase 2, surgeons' accuracies in classifying complete fractures were all above 85%. Conclusions: With clear and unambiguous definition, this new grading system for supracondylar fracture displacement has proved to be sufficiently reliable and accurate when applied by pediatric surgeons in the framework of clinical routine as well as research.
Resumo:
Context: Ovarian tumors (OT) typing is a competency expected from pathologists, with significant clinical implications. OT however come in numerous different types, some rather rare, with the consequence of few opportunities for practice in some departments. Aim: Our aim was to design a tool for pathologists to train in less common OT typing. Method and Results: Representative slides of 20 less common OT were scanned (Nano Zoomer Digital Hamamatsu®) and the diagnostic algorithm proposed by Young and Scully applied to each case (Young RH and Scully RE, Seminars in Diagnostic Pathology 2001, 18: 161-235) to include: recognition of morphological pattern(s); shortlisting of differential diagnosis; proposition of relevant immunohistochemical markers. The next steps of this project will be: evaluation of the tool in several post-graduate training centers in Europe and Québec; improvement of its design based on evaluation results; diffusion to a larger public. Discussion: In clinical medicine, solving many cases is recognized as of utmost importance for a novice to become an expert. This project relies on the virtual slides technology to provide pathologists with a learning tool aimed at increasing their skills in OT typing. After due evaluation, this model might be extended to other uncommon tumors.
Resumo:
3 Summary 3. 1 English The pharmaceutical industry has been facing several challenges during the last years, and the optimization of their drug discovery pipeline is believed to be the only viable solution. High-throughput techniques do participate actively to this optimization, especially when complemented by computational approaches aiming at rationalizing the enormous amount of information that they can produce. In siiico techniques, such as virtual screening or rational drug design, are now routinely used to guide drug discovery. Both heavily rely on the prediction of the molecular interaction (docking) occurring between drug-like molecules and a therapeutically relevant target. Several softwares are available to this end, but despite the very promising picture drawn in most benchmarks, they still hold several hidden weaknesses. As pointed out in several recent reviews, the docking problem is far from being solved, and there is now a need for methods able to identify binding modes with a high accuracy, which is essential to reliably compute the binding free energy of the ligand. This quantity is directly linked to its affinity and can be related to its biological activity. Accurate docking algorithms are thus critical for both the discovery and the rational optimization of new drugs. In this thesis, a new docking software aiming at this goal is presented, EADock. It uses a hybrid evolutionary algorithm with two fitness functions, in combination with a sophisticated management of the diversity. EADock is interfaced with .the CHARMM package for energy calculations and coordinate handling. A validation was carried out on 37 crystallized protein-ligand complexes featuring 11 different proteins. The search space was defined as a sphere of 15 R around the center of mass of the ligand position in the crystal structure, and conversely to other benchmarks, our algorithms was fed with optimized ligand positions up to 10 A root mean square deviation 2MSD) from the crystal structure. This validation illustrates the efficiency of our sampling heuristic, as correct binding modes, defined by a RMSD to the crystal structure lower than 2 A, were identified and ranked first for 68% of the complexes. The success rate increases to 78% when considering the five best-ranked clusters, and 92% when all clusters present in the last generation are taken into account. Most failures in this benchmark could be explained by the presence of crystal contacts in the experimental structure. EADock has been used to understand molecular interactions involved in the regulation of the Na,K ATPase, and in the activation of the nuclear hormone peroxisome proliferatoractivated receptors a (PPARa). It also helped to understand the action of common pollutants (phthalates) on PPARy, and the impact of biotransformations of the anticancer drug Imatinib (Gleevec®) on its binding mode to the Bcr-Abl tyrosine kinase. Finally, a fragment-based rational drug design approach using EADock was developed, and led to the successful design of new peptidic ligands for the a5ß1 integrin, and for the human PPARa. In both cases, the designed peptides presented activities comparable to that of well-established ligands such as the anticancer drug Cilengitide and Wy14,643, respectively. 3.2 French Les récentes difficultés de l'industrie pharmaceutique ne semblent pouvoir se résoudre que par l'optimisation de leur processus de développement de médicaments. Cette dernière implique de plus en plus. de techniques dites "haut-débit", particulièrement efficaces lorsqu'elles sont couplées aux outils informatiques permettant de gérer la masse de données produite. Désormais, les approches in silico telles que le criblage virtuel ou la conception rationnelle de nouvelles molécules sont utilisées couramment. Toutes deux reposent sur la capacité à prédire les détails de l'interaction moléculaire entre une molécule ressemblant à un principe actif (PA) et une protéine cible ayant un intérêt thérapeutique. Les comparatifs de logiciels s'attaquant à cette prédiction sont flatteurs, mais plusieurs problèmes subsistent. La littérature récente tend à remettre en cause leur fiabilité, affirmant l'émergence .d'un besoin pour des approches plus précises du mode d'interaction. Cette précision est essentielle au calcul de l'énergie libre de liaison, qui est directement liée à l'affinité du PA potentiel pour la protéine cible, et indirectement liée à son activité biologique. Une prédiction précise est d'une importance toute particulière pour la découverte et l'optimisation de nouvelles molécules actives. Cette thèse présente un nouveau logiciel, EADock, mettant en avant une telle précision. Cet algorithme évolutionnaire hybride utilise deux pressions de sélections, combinées à une gestion de la diversité sophistiquée. EADock repose sur CHARMM pour les calculs d'énergie et la gestion des coordonnées atomiques. Sa validation a été effectuée sur 37 complexes protéine-ligand cristallisés, incluant 11 protéines différentes. L'espace de recherche a été étendu à une sphère de 151 de rayon autour du centre de masse du ligand cristallisé, et contrairement aux comparatifs habituels, l'algorithme est parti de solutions optimisées présentant un RMSD jusqu'à 10 R par rapport à la structure cristalline. Cette validation a permis de mettre en évidence l'efficacité de notre heuristique de recherche car des modes d'interactions présentant un RMSD inférieur à 2 R par rapport à la structure cristalline ont été classés premier pour 68% des complexes. Lorsque les cinq meilleures solutions sont prises en compte, le taux de succès grimpe à 78%, et 92% lorsque la totalité de la dernière génération est prise en compte. La plupart des erreurs de prédiction sont imputables à la présence de contacts cristallins. Depuis, EADock a été utilisé pour comprendre les mécanismes moléculaires impliqués dans la régulation de la Na,K ATPase et dans l'activation du peroxisome proliferatoractivated receptor a (PPARa). Il a également permis de décrire l'interaction de polluants couramment rencontrés sur PPARy, ainsi que l'influence de la métabolisation de l'Imatinib (PA anticancéreux) sur la fixation à la kinase Bcr-Abl. Une approche basée sur la prédiction des interactions de fragments moléculaires avec protéine cible est également proposée. Elle a permis la découverte de nouveaux ligands peptidiques de PPARa et de l'intégrine a5ß1. Dans les deux cas, l'activité de ces nouveaux peptides est comparable à celles de ligands bien établis, comme le Wy14,643 pour le premier, et le Cilengitide (PA anticancéreux) pour la seconde.
Resumo:
STUDY DESIGN:: Retrospective database- query to identify all anterior spinal approaches. OBJECTIVES:: To assess all patients with pharyngo-cutaneous fistulas after anterior cervical spine surgery. SUMMARY OF BACKGROUND DATA:: Patients treated in University of Heidelberg Spine Medical Center, Spinal Cord Injury Unit and Department of Otolaryngology (Germany), between 2005 and 2011 with the diagnosis of pharyngo-cutaneous fistulas. METHODS:: We conducted a retrospective study on 5 patients between 2005 and 2011 with PCF after ACSS, their therapy management and outcome according to radiologic data and patient charts. RESULTS:: Upon presentation 4 patients were paraplegic. 2 had PCF arising from one piriform sinus, two patients from the posterior pharyngeal wall and piriform sinus combined and one patient only from the posterior pharyngeal wall. 2 had previous unsuccessful surgical repair elsewhere and 1 had prior radiation therapy. In 3 patients speech and swallowing could be completely restored, 2 patients died. Both were paraplegic. The patients needed an average of 2-3 procedures for complete functional recovery consisting of primary closure with various vascularised regional flaps and refining laser procedures supplemented with negative pressure wound therapy where needed. CONCLUSION:: Based on our experience we are able to provide a treatment algorithm that indicates that chronic as opposed to acute fistulas require a primary surgical closure combined with a vascularised flap that should be accompanied by the immediate application of a negative pressure wound therapy. We also conclude that particularly in paraplegic patients suffering this complication the risk for a fatal outcome is substantial.
Resumo:
Introduction New evidence from randomized controlled and etiology of fever studies, the availability of reliable RDT for malaria, and novel technologies call for revision of the IMCI strategy. We developed a new algorithm based on (i) a systematic review of published studies assessing the safety and appropriateness of RDT and antibiotic prescription, (ii) results from a clinical and microbiological investigation of febrile children aged <5 years, (iii) international expert IMCI opinions. The aim of this study was to assess the safety of the new algorithm among patients in urban and rural areas of Tanzania.Materials and Methods The design was a controlled noninferiority study. Enrolled children aged 2-59 months with any illness were managed either by a study clinician using the new Almanach algorithm (two intervention health facilities), or clinicians using standard practice, including RDT (two control HF). At day 7 and day 14, all patients were reassessed. Patients who were ill in between or not cured at day 14 were followed until recovery or death. Primary outcome was rate of complications, secondary outcome rate of antibiotic prescriptions.Results 1062 children were recruited. Main diagnoses were URTI 26%, pneumonia 19% and gastroenteritis (9.4%). 98% (531/541) were cured at D14 in the Almanach arm and 99.6% (519/521) in controls. Rate of secondary hospitalization was 0.2% in each. One death occurred in controls. None of the complications was due to withdrawal of antibiotics or antimalarials at day 0. Rate of antibiotic use was 19% in the Almanach arm and 84% in controls.Conclusion Evidence suggests that the new algorithm, primarily aimed at the rational use of drugs, is as safe as standard practice and leads to a drastic reduction of antibiotic use. The Almanach is currently being tested for clinician adherence to proposed procedures when used on paper or a mobile phone
Resumo:
Although fetal anatomy can be adequately viewed in new multi-slice MR images, many critical limitations remain for quantitative data analysis. To this end, several research groups have recently developed advanced image processing methods, often denoted by super-resolution (SR) techniques, to reconstruct from a set of clinical low-resolution (LR) images, a high-resolution (HR) motion-free volume. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has been quite attracted by Total Variation energies because of their ability in edge preserving but only standard explicit steepest gradient techniques have been applied for optimization. In a preliminary work, it has been shown that novel fast convex optimization techniques could be successfully applied to design an efficient Total Variation optimization algorithm for the super-resolution problem. In this work, two major contributions are presented. Firstly, we will briefly review the Bayesian and Variational dual formulations of current state-of-the-art methods dedicated to fetal MRI reconstruction. Secondly, we present an extensive quantitative evaluation of our SR algorithm previously introduced on both simulated fetal and real clinical data (with both normal and pathological subjects). Specifically, we study the robustness of regularization terms in front of residual registration errors and we also present a novel strategy for automatically select the weight of the regularization as regards the data fidelity term. Our results show that our TV implementation is highly robust in front of motion artifacts and that it offers the best trade-off between speed and accuracy for fetal MRI recovery as in comparison with state-of-the art methods.
Resumo:
INTRODUCTION: The decline of malaria and scale-up of rapid diagnostic tests calls for a revision of IMCI. A new algorithm (ALMANACH) running on mobile technology was developed based on the latest evidence. The objective was to ensure that ALMANACH was safe, while keeping a low rate of antibiotic prescription. METHODS: Consecutive children aged 2-59 months with acute illness were managed using ALMANACH (2 intervention facilities), or standard practice (2 control facilities) in Tanzania. Primary outcomes were proportion of children cured at day 7 and who received antibiotics on day 0. RESULTS: 130/842 (15∙4%) in ALMANACH and 241/623 (38∙7%) in control arm were diagnosed with an infection in need for antibiotic, while 3∙8% and 9∙6% had malaria. 815/838 (97∙3%;96∙1-98.4%) were cured at D7 using ALMANACH versus 573/623 (92∙0%;89∙8-94∙1%) using standard practice (p<0∙001). Of 23 children not cured at D7 using ALMANACH, 44% had skin problems, 30% pneumonia, 26% upper respiratory infection and 13% likely viral infection at D0. Secondary hospitalization occurred for one child using ALMANACH and one who eventually died using standard practice. At D0, antibiotics were prescribed to 15∙4% (12∙9-17∙9%) using ALMANACH versus 84∙3% (81∙4-87∙1%) using standard practice (p<0∙001). 2∙3% (1∙3-3.3) versus 3∙2% (1∙8-4∙6%) received an antibiotic secondarily. CONCLUSION: Management of children using ALMANACH improve clinical outcome and reduce antibiotic prescription by 80%. This was achieved through more accurate diagnoses and hence better identification of children in need of antibiotic treatment or not. The building on mobile technology allows easy access and rapid update of the decision chart. TRIAL REGISTRATION: Pan African Clinical Trials Registry PACTR201011000262218.
Resumo:
OBJECTIVE: To review the available knowledge on epidemiology and diagnoses of acute infections in children aged 2 to 59 months in primary care setting and develop an electronic algorithm for the Integrated Management of Childhood Illness to reach optimal clinical outcome and rational use of medicines. METHODS: A structured literature review in Medline, Embase and the Cochrane Database of Systematic Review (CDRS) looked for available estimations of diseases prevalence in outpatients aged 2-59 months, and for available evidence on i) accuracy of clinical predictors, and ii) performance of point-of-care tests for targeted diseases. A new algorithm for the management of childhood illness (ALMANACH) was designed based on evidence retrieved and results of a study on etiologies of fever in Tanzanian children outpatients. FINDINGS: The major changes in ALMANACH compared to IMCI (2008 version) are the following: i) assessment of 10 danger signs, ii) classification of non-severe children into febrile and non-febrile illness, the latter receiving no antibiotics, iii) classification of pneumonia based on a respiratory rate threshold of 50 assessed twice for febrile children 12-59 months; iv) malaria rapid diagnostic test performed for all febrile children. In the absence of identified source of fever at the end of the assessment, v) urine dipstick performed for febrile children <2 years to consider urinary tract infection, vi) classification of 'possible typhoid' for febrile children >2 years with abdominal tenderness; and lastly vii) classification of 'likely viral infection' in case of negative results. CONCLUSION: This smartphone-run algorithm based on new evidence and two point-of-care tests should improve the quality of care of <5 year children and lead to more rational use of antimicrobials.
Resumo:
Fetal MRI reconstruction aims at finding a high-resolution image given a small set of low-resolution images. It is usually modeled as an inverse problem where the regularization term plays a central role in the reconstruction quality. Literature has considered several regularization terms s.a. Dirichlet/Laplacian energy [1], Total Variation (TV)based energies [2,3] and more recently non-local means [4]. Although TV energies are quite attractive because of their ability in edge preservation, standard explicit steepest gradient techniques have been applied to optimize fetal-based TV energies. The main contribution of this work lies in the introduction of a well-posed TV algorithm from the point of view of convex optimization. Specifically, our proposed TV optimization algorithm for fetal reconstruction is optimal w.r.t. the asymptotic and iterative convergence speeds O(1/n(2)) and O(1/root epsilon), while existing techniques are in O(1/n) and O(1/epsilon). We apply our algorithm to (1) clinical newborn data, considered as ground truth, and (2) clinical fetal acquisitions. Our algorithm compares favorably with the literature in terms of speed and accuracy.