79 resultados para Mean life span
Resumo:
Biologicals have been used for decades in biopharmaceutical topical preparations. Because cellular therapies are rou-tinely used in the clinic they have gained significant attention. Different derivatives are possible from different cell and tissue sources, making the selection of cell types and establishment of consistent cell banks crucial steps in the initial whole-cell bioprocessing. Various cell and tissue types have been used in treatment of skin wounds including autolo-gous and allogenic skin cells, platelets, placenta and amniotic extracts from either human or animal sources. Experience with progenitor cells show that they may provide an interesting cell choice due to facility of out-scaling and known properties for wound healing without scar. Using defined animal cell lines to develop cell-free derivatives may provide initial starting material for pharmaceutical formulations that help in overall stability. Cell lines derived from ovine tis-sue (skin, muscle, connective tissue) can be developed in short periods of time and consistency of these cell lines was monitored by cellular life-span, protein concentrations, stability and activity. Each cell line had long culture periods up to 37 - 41 passages and protein measures for each cell line at passages 2 - 15 had only 1.4-fold maximal difference. Growth stimulation activity towards two target skin cell lines (GM01717 and CRL-1221; 40 year old human males) at concentrations ranging up to 6 μg/ml showed 2-3-fold (single extracts) and 3-7-fold (co-cultured extracts) increase. Proteins from co-culture remained stable up to 1 year in pharmaceutical preparations shown by separation on SDS- PAGE gels. Pharmaceutical cell-free preparations were used for veterinary and human wounds and burns. Cell lines and cell-free extracts can show remarkable consistency and stability for preparation of biopharmaceutical creams, moreover when cells are co-cultured, and have positive effects for tissue repair.
Resumo:
Like most somatic human cells, T lymphocytes have a limited replicative life span. This phenomenon, called senescence, presents a serious barrier to clinical applications that require large numbers of Ag-specific T cells such as adoptive transfer therapy. Ectopic expression of hTERT, the human catalytic subunit of the enzyme telomerase, permits fibroblasts and endothelial cells to avoid senescence and to become immortal. In an attempt to immortalize normal human CD8(+) T lymphocytes, we infected bulk cultures or clones of these cells with a retrovirus transducing an hTERT cDNA clone. More than 90% of transduced cells expressed the transgene, and the cell populations contained high levels of telomerase activity. Measuring the content of total telomere repeats in individual cells (by flowFISH) we found that ectopic hTERT expression reversed the gradual loss of telomeric DNA observed in control populations during long term culture. Telomere length in transduced cells reached the levels observed in freshly isolated normal CD8(+) lymphocytes. Nevertheless, all hTERT-transduced populations stopped to divide at the same time as nontransduced or vector-transduced control cells. When kept in IL-2 the arrested cells remained alive. Our results indicate that hTERT may be required but is not sufficient to immortalize human T lymphocytes.
Resumo:
La tomodensitométrie (CT) est une technique d'imagerie dont l'intérêt n'a cessé de croître depuis son apparition dans le début des années 70. Dans le domaine médical, son utilisation est incontournable à tel point que ce système d'imagerie pourrait être amené à devenir victime de son succès si son impact au niveau de l'exposition de la population ne fait pas l'objet d'une attention particulière. Bien évidemment, l'augmentation du nombre d'examens CT a permis d'améliorer la prise en charge des patients ou a rendu certaines procédures moins invasives. Toutefois, pour assurer que le compromis risque - bénéfice soit toujours en faveur du patient, il est nécessaire d'éviter de délivrer des doses non utiles au diagnostic.¦Si cette action est importante chez l'adulte elle doit être une priorité lorsque les examens se font chez l'enfant, en particulier lorsque l'on suit des pathologies qui nécessitent plusieurs examens CT au cours de la vie du patient. En effet, les enfants et jeunes adultes sont plus radiosensibles. De plus, leur espérance de vie étant supérieure à celle de l'adulte, ils présentent un risque accru de développer un cancer radio-induit dont la phase de latence peut être supérieure à vingt ans. Partant du principe que chaque examen radiologique est justifié, il devient dès lors nécessaire d'optimiser les protocoles d'acquisitions pour s'assurer que le patient ne soit pas irradié inutilement. L'avancée technologique au niveau du CT est très rapide et depuis 2009, de nouvelles techniques de reconstructions d'images, dites itératives, ont été introduites afin de réduire la dose et améliorer la qualité d'image.¦Le présent travail a pour objectif de déterminer le potentiel des reconstructions itératives statistiques pour réduire au minimum les doses délivrées lors d'examens CT chez l'enfant et le jeune adulte tout en conservant une qualité d'image permettant le diagnostic, ceci afin de proposer des protocoles optimisés.¦L'optimisation d'un protocole d'examen CT nécessite de pouvoir évaluer la dose délivrée et la qualité d'image utile au diagnostic. Alors que la dose est estimée au moyen d'indices CT (CTDIV0| et DLP), ce travail a la particularité d'utiliser deux approches radicalement différentes pour évaluer la qualité d'image. La première approche dite « physique », se base sur le calcul de métriques physiques (SD, MTF, NPS, etc.) mesurées dans des conditions bien définies, le plus souvent sur fantômes. Bien que cette démarche soit limitée car elle n'intègre pas la perception des radiologues, elle permet de caractériser de manière rapide et simple certaines propriétés d'une image. La seconde approche, dite « clinique », est basée sur l'évaluation de structures anatomiques (critères diagnostiques) présentes sur les images de patients. Des radiologues, impliqués dans l'étape d'évaluation, doivent qualifier la qualité des structures d'un point de vue diagnostique en utilisant une échelle de notation simple. Cette approche, lourde à mettre en place, a l'avantage d'être proche du travail du radiologue et peut être considérée comme méthode de référence.¦Parmi les principaux résultats de ce travail, il a été montré que les algorithmes itératifs statistiques étudiés en clinique (ASIR?, VEO?) ont un important potentiel pour réduire la dose au CT (jusqu'à-90%). Cependant, par leur fonctionnement, ils modifient l'apparence de l'image en entraînant un changement de texture qui pourrait affecter la qualité du diagnostic. En comparant les résultats fournis par les approches « clinique » et « physique », il a été montré que ce changement de texture se traduit par une modification du spectre fréquentiel du bruit dont l'analyse permet d'anticiper ou d'éviter une perte diagnostique. Ce travail montre également que l'intégration de ces nouvelles techniques de reconstruction en clinique ne peut se faire de manière simple sur la base de protocoles utilisant des reconstructions classiques. Les conclusions de ce travail ainsi que les outils développés pourront également guider de futures études dans le domaine de la qualité d'image, comme par exemple, l'analyse de textures ou la modélisation d'observateurs pour le CT.¦-¦Computed tomography (CT) is an imaging technique in which interest has been growing since it first began to be used in the early 1970s. In the clinical environment, this imaging system has emerged as the gold standard modality because of its high sensitivity in producing accurate diagnostic images. However, even if a direct benefit to patient healthcare is attributed to CT, the dramatic increase of the number of CT examinations performed has raised concerns about the potential negative effects of ionizing radiation on the population. To insure a benefit - risk that works in favor of a patient, it is important to balance image quality and dose in order to avoid unnecessary patient exposure.¦If this balance is important for adults, it should be an absolute priority for children undergoing CT examinations, especially for patients suffering from diseases requiring several follow-up examinations over the patient's lifetime. Indeed, children and young adults are more sensitive to ionizing radiation and have an extended life span in comparison to adults. For this population, the risk of developing cancer, whose latency period exceeds 20 years, is significantly higher than for adults. Assuming that each patient examination is justified, it then becomes a priority to optimize CT acquisition protocols in order to minimize the delivered dose to the patient. Over the past few years, CT advances have been developing at a rapid pace. Since 2009, new iterative image reconstruction techniques, called statistical iterative reconstructions, have been introduced in order to decrease patient exposure and improve image quality.¦The goal of the present work was to determine the potential of statistical iterative reconstructions to reduce dose as much as possible without compromising image quality and maintain diagnosis of children and young adult examinations.¦The optimization step requires the evaluation of the delivered dose and image quality useful to perform diagnosis. While the dose is estimated using CT indices (CTDIV0| and DLP), the particularity of this research was to use two radically different approaches to evaluate image quality. The first approach, called the "physical approach", computed physical metrics (SD, MTF, NPS, etc.) measured on phantoms in well-known conditions. Although this technique has some limitations because it does not take radiologist perspective into account, it enables the physical characterization of image properties in a simple and timely way. The second approach, called the "clinical approach", was based on the evaluation of anatomical structures (diagnostic criteria) present on patient images. Radiologists, involved in the assessment step, were asked to score image quality of structures for diagnostic purposes using a simple rating scale. This approach is relatively complicated to implement and also time-consuming. Nevertheless, it has the advantage of being very close to the practice of radiologists and is considered as a reference method.¦Primarily, this work revealed that the statistical iterative reconstructions studied in clinic (ASIR? and VECO have a strong potential to reduce CT dose (up to -90%). However, by their mechanisms, they lead to a modification of the image appearance with a change in image texture which may then effect the quality of the diagnosis. By comparing the results of the "clinical" and "physical" approach, it was showed that a change in texture is related to a modification of the noise spectrum bandwidth. The NPS analysis makes possible to anticipate or avoid a decrease in image quality. This project demonstrated that integrating these new statistical iterative reconstruction techniques can be complex and cannot be made on the basis of protocols using conventional reconstructions. The conclusions of this work and the image quality tools developed will be able to guide future studies in the field of image quality as texture analysis or model observers dedicated to CT.
Resumo:
OBJECTIVES: Studies of cognition in bipolar disorder (BD) have reported impairments in processing speed, working memory, episodic memory, and executive function, but they have primarily focused on young and middle-aged adults. In such studies, the severity of cognitive deficits increases with the duration of illness. Therefore, one would expect more pronounced deficits in patients with longstanding BD. The first aim of the present study was to determine the pattern and the magnitude of cognitive impairment in older euthymic BD patients. The second aim was to explore the interrelationship between these cognitive deficits and determine whether they reflect a single core impairment or the co-occurrence of independent cognitive deficits. METHODS: Twenty-two euthymic elderly BD patients and 22 controls, matched for gender, age, and education, underwent a comprehensive neuropsychological assessment. RESULTS: Compared to controls, BD patients had significantly reduced performance in processing speed, working memory, verbal fluency, and episodic memory, but not in executive function. Hierarchical regression analyses showed that verbal fluency and working memory impairments were fully mediated by changes in processing speed. This was not the case for the episodic memory dysfunction. CONCLUSION: The cognitive profile in older euthymic BD cases is similar to the one described in younger BD cohorts. Our results further suggest that impaired processing speed plays a major role in the cognitive changes observed in BD patients except for deficits in episodic memory, thus providing strong evidence that processing speed and episodic memory are two core deficits in elderly BD patients.
Resumo:
Epidemiological studies in humans have demonstrated a relationship between pathological events during fetal development and increased cardiovascular risk later in life and have led to the so called "Fetal programming of cardiovascular disease hypothesis". The recent observation of generalised vascular dysfunction in young apparently healthy children conceived by assisted reproductive technologies (ART) provides a novel and potentially very important example of this hypothesis. This review summarises recent data in ART children demonstrating premature subclinical atherosclerosis in the systemic circulation and pulmonary vascular dysfunction predisposing to exaggerated hypoxia-induced pulmonary hypertension. These problems appear to be related to the ART procedure per se. Studies in ART mice demonstrating premature vascular aging and arterial hypertension further demonstrate the potential of ART to increase cardiovascular risk and have allowed to unravel epigenetic alterations of the eNOS gene as an underpinning mechanism. The roughly 25% shortening of the life span in ART mice challenged with a western style high-fat-diet demonstrates the potential importance of these alterations for the long-term outcome. Given the young age of the ART population, data on cardiovascular endpoints will not be available before 20 to 30 years from now. However, already now cohort studies of the ART population are needed to early detect cardiovascular alterations with the aim to prevent or at least optimally treat cardiovascular complications. Finally, a debate needs to be engaged on the future of ART and the consequences of its exponential growth for public health.
Resumo:
Mammals are characterized by specific phenotypic traits that include lactation, hair, and relatively large brains with unique structures. Individual mammalian lineages have, in turn, evolved characteristic traits that distinguish them from others. These include obvious anatom¬ical differences but also differences related to reproduction, life span, cognitive abilities, be¬havior. and disease susceptibility. However, the molecular basis of the diverse mammalian phenotypes and the selective pressures that shaped their evolution remain largely unknown. In the first part of my thesis, I analyzed the genetic factors associated with the origin of a unique mammalian phenotype lactation and I studied the selective pressures that forged the transition from oviparity to viviparity. Using a comparative genomics approach and evolutionary simulations, I showed that the emergence of lactation, as well as the appear¬ance of the casein gene family, significantly reduced selective pressure on the major egg-yolk proteins (the vitellogenin family). This led to a progressive loss of vitellogenins, which - in oviparous species - act as storage proteins for lipids, amino acids, phosphorous and calcium in the isolated egg. The passage to internal fertilization and placentation in therian mam¬mals rendered vitellogenins completely dispensable, which ended in the loss of the whole gene family in this lineage. As illustrated by the vitellogenin study, changes in gene content are one possible underlying factor for the evolution of mammalian-specific phenotypes. However, more subtle genomic changes, such as mutations in protein-coding sequences, can also greatly affect the phenotypes. In particular, it was proposed that changes at the level of gene reg¬ulation could underlie many (or even most) phenotypic differences between species. In the second part of my thesis, I participated in a major comparative study of mammalian tissue transcriptomes, with the goal of understanding how evolutionary forces affected expression patterns in the past 200 million years of mammalian evolution. I showed that, while com¬parisons of gene expressions are in agreement with the known species phylogeny, the rate of expression evolution varies greatly among lineages. Species with low effective population size, such as monotremes and hominoids, showed significantly accelerated rates of gene expression evolution. The most likely explanation for the high rate of gene expression evolution in these lineages is the accumulation of mildly deleterious mutations in regulatory regions, due to the low efficiency of purifying selection. Thus, our observations are in agreement with the nearly neutral theory of molecular evolution. I also describe substantial differences in evolutionary rates between tissues, with brain being the most constrained (especially in primates) and testis significantly accelerated. The rate of gene expression evolution also varies significantly between chromosomes. In particular, I observed an acceleration of gene expression changes on the X chromosome, probably as a result of adaptive processes associated with the origin of therian sex chromosomes. Lastly, I identified several individual genes as well as co-regulated expression modules that have undergone lineage specific expression changes and likely under¬lie various phenotypic innovations in mammals. The methods developed during my thesis, as well as the comprehensive gene content analyses and transcriptomics datasets made available by our group, will likely prove to be useful for further exploratory analyses of the diverse mammalian phenotypes.
Resumo:
Effector T lymphocytes are the progeny of a limited number of antigen- specific precursor cells and it has been estimated that clonotypic human T cells may expand million fold on their way reaching high cell numbers that are sufficient for immune protection. Moreover, memory T cell responses are characterized by repetitive expansion of antigen-specific T cell clonotypes, and limitations in the proliferative capacity could lead to immune senescence. Because telomeres progressively shorten as a function of cell division, telomere length is a powerful indicator of the replicative in vivo history of human T lymphocytes. In this review, we summarize observations made over the last decade on telomere length dynamics of well-defined T cell populations derived from healthy donors and patients with infectious disease or cancer. We focus on T cell differentiation, T cell ageing, and natural and vaccine induced immune responses. We also discuss the scientific evidence for in vivo replicative senescence of antigen-specific T cells, and evaluate the available methods for measuring telomere lengths and telomerase activity, and their potential and limitations to increase our understanding of T cell physiology. (C) 2007 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Sexual reproduction is extremely widespread in spite of its presumed costs relative to asexual reproduction, indicating that it must provide significant advantages. One postulated benefit of sex and recombination is that they facilitate the purging of mildly deleterious mutations, which would accumulate in asexual lineages and contribute to their short evolutionary life span. To test this prediction, we estimated the accumulation rate of coding (nonsynonymous) mutations, which are expected to be deleterious, in parts of one mitochondrial (COI) and two nuclear (Actin and Hsp70) genes in six independently derived asexual lineages and related sexual species of Timema stick insects. We found signatures of increased coding mutation accumulation in all six asexual Timema and for each of the three analyzed genes, with 3.6- to 13.4-fold higher rates in the asexuals as compared with the sexuals. In addition, because coding mutations in the asexuals often resulted in considerable hydrophobicity changes at the concerned amino acid positions, coding mutations in the asexuals are likely associated with more strongly deleterious effects than in the sexuals. Our results demonstrate that deleterious mutation accumulation can differentially affect sexual and asexual lineages and support the idea that deleterious mutation accumulation plays an important role in limiting the long-term persistence of all-female lineages.
Resumo:
Aging is a multidimensional process of physical, psychological, and social changes. Understanding how we sleep and how this dynamic process evolves across life span will help to identify normal developmental aspects of sleep over time and to create strategies to increase awareness of sleep disturbances and their early management. In normal sleepers from HypnoLaus cohort, we evaluated the effects of age and gender on both subjective and objective sleep measurements. Our results indicate that normal aging is not accompanied by sleep complaints, and when they exist suggest the presence of underlying comorbidities. Polysomnographic data revealed that slow wave sleep was more affected with age in men, and age affected differently NREM and REM spectral power densities. Both sleep structure and spectral analysis profiles may constitute standards to delineate pathological changes in sleep, both for aging women and men. Another important aspect in the management of sleep and its disorders is a detailed characterization of sleep-inducing medications. Gamma-hydroxybutyrate (GHB) is an inhibitory neurotransmitter derivative of GABA, but its mode of action and the range of effects are not well understood. Several properties, as growth hormone stimulation in humans and the development of weight loss in treated patients suggest an unexplored metabolic effect. In different experiments we assessed the effects of acute, short term and chronic GHB administration on central (cerebral cortex) and peripheral (liver) biochemical processes involved in the metabolism of the drug, as well as the effects of the drug on metabolism in C57BL/6J, GABAB knock-out and obese (ob/ob) mice. We showed that GHB treatment affects weight gain in C57BL/6J and GABAB knock-out mice. Metabolomic analysis indicated large central and peripheral metabolic changes induced by GHB with important relevance to its therapeutic use. -- Le vieillissement est un processus multidimensionnel accompagné par de multiples changements dans les domaines physique, psychologique et social. Comprendre comment nous dormons et comment ce processus dynamique évolue sur la durée de vie nous aidera à identifier les aspects normaux du développement du sommeil au fil du temps, et à créer des stratégies pour accroître la connaissance et compréhension des troubles du sommeil et leur prise en charge précoce. Chez les sujets normaux de la cohorte HypnoLaus nous avons évalué les effets de l'âge et du sexe sur les mesures subjectives et objectives du sommeil. Nos résultats indiquent que le vieillissement normal ne s'accompagne pas de troubles du sommeil, et quand ils existent ceux-ci suggèrent la présence de comorbidités sous-jacentes. Les données polysomnographiques ont révélé que le sommeil profond était plus affecté avec l'âge chez les hommes. De plus, nous avons montré comment l'âge modifie la composition spectrale du sommeil lent et paradoxal. La structure du sommeil et les profils d'analyse spectrale peuvent donc constituer des standards permettant de définir les changements pathologiques du sommeil chez les personnes âgées. Parmi les aspects importants de la gestion du sommeil et de ses troubles, la caractérisation détaillée des médicaments hypnotiques utilisés est essentielle. L'acide gamma-hydroxybutyrique (GHB) est un acide gras à courte chaîne dérivé du GABA, principal neurotransmetteur inhibiteur du cerveau, mais son mode d'action et tous ses effets sont toujours largement méconnus. Plusieurs propriétés, comme la stimulation de la sécrétion de l'hormone de croissance chez l'homme et le développement d'une perte de poids chez les patients traités suggèrent un effet métabolique inexploré. Dans différentes expériences, nous avons évalué les effets d'une exposition aiguë, à court terme et chronique de GHB sur les processus biochimiques centraux (cortex cérébral) et périphériques (foie) impliqués dans le métabolisme du médicament. Nous avons aussi évalué les effets du médicament sur le métabolisme des souris C57BL/6J, GABAB KO et obèses (ob/ob). Nos résultats ont montré que le GHB diminue le gain de poids chez les souris C57BL/6J et GABAB KO. L'analyse métabolomique a indiqué des changements importants induits par GHB au niveau central et périphérique, et ces effets sont importants pour son utilisation thérapeutique.
Resumo:
Résumé La plupart des cellules issues du sang ont une durée de vie limitée. Dans les cellules somatiques humaines, y incluant les lymphocytes T, la taille des télomères diminue progressivement à chaque division cellulaire, pouvant aboutir à des instabilités chromosomiques. L'expression ectopique du gène de la transcriptase réverse de la télomérase (hTERT) dans les cellules restaure l'activité de la télomérase, et permet un rallongement de leur vie réplicative. Malgré l'absence de signes caractéristiques de transformation, nous ne savons pas encore si les cellules somatiques qui surexpriment hTERT sont physiologiquement indiscernables des cellules normales. Certaines études récentes proposent que la télomérase joue plusieurs rôles additionnels dans d'autres phénomènes biologiques tels que la réparation de l'ADN, la survie et la croissance des cellules. Dans notre étude, nous avons utilisé des clones issus de lymphocytes T cytotoxiques surexprimant la télomérase afin d'étudier les mécanismes moléculaires qui règlent leur prolifération et leur sénescence. Nous avons montré que les «jeunes » cellules T exprimant ou non hTERT révèlent des taux de croissance identiques suite à des réponses de stimulation induites par des mitogènes. De plus, aucun changement global dans leur expression des gènes n'a pu être mis en évidence. Curieusement, nous avons observé des réponses réduites dans la prolifération des cellules transduites avec la télomérase qui présentaient une élongation des télomères et une durée de vie prolongée. Ces cellules, malgré le maintien d'un niveau élevé de l'expression de gènes impliqués dans la progression du cycle cellulaire, ont également montré une expression accrue de plusieurs gènes trouvés en commun avec nos lymphocytes T vieillissants n'exprimant pas de télomérase. En particulier, les cellules ayant une durée de vie prolongée grâce à l'expression de la télomérase accumulaient également certains inhibiteurs du cycle cellulaire tels que p16Ink4a et p21Cip1, associés à l'arrêt de la croissance cellulaire. En résumé, nos résultats indiquent la présence fonctionnelle de mécanismes alternatifs pouvant contrôler la croissance réplicative de ces cellules; ils sont donc encourageants dans l'optique d'une utilisation à moindre risque de lymphocytes T «immortalisés » à des fins thérapeutiques pour traiter les tumeurs malignes ou les infections. Summary Most mature blood cells have a finite life span. In human somatic cells, including T lymphocytes, telomeres progressively shorten with each cell division eventually leading to chromosomal instability. Ectopic expression of the human telomerase reverse transcriptase (hTERT) gene in cells restores telomerase activity and results in the extension of their replicative life span. Despite lack of transformation characteristics, it is yet unknown whether somatic cells that over-express telomerase are biologically and physiologically indistinguishable from normal cells. Recent data suggest that telomerase might mediate additional functions in DNA repair, cell survival and cell growth. Using CD8+ T lymphocyte clones over-expressing telomerase we investigated the molecular mechanisms that regulate T cell proliferation and senescence. Here we show that early-passage T cell clones transduced or not with hTERT displayed identical growth rates upon mitogenic stimulation and no marked global changes in gene expression. Surprisingly, reduced proliferative responses were observed in hTERT-transduced cells with elongated telomeres and extended life span. These cells, despite maintaining high expression level of genes involved in cell cycle division and progression, also showed increased expression of several genes associated with normal aging T lymphocytes. In particular, late passage T cells over-expressing telomerase accumulated the cyclin-dependent inhibitors p16INK4a and p21CIP1 that have largely been associated with in vitro growth arrest. Whether tumor-reactive CD8+ T cells that ectopically express telomerase could now be used for adoptive transfer therapy in cancer patients remains unclear at this point. Nevertheless, our results regarding the safe and effective use of hTERT-transduced lymphocytes are encouraging, since they indicate that alternative growth arrest mechanisms such as p 16 and p21 are still functional in these cells and regulate to some extend their growth potential.
Resumo:
Bacteria must control the progression of their cell cycle in response to nutrient availability. This regulation can be mediated by guanosine tetra- or pentaphosphate [(p)ppGpp], which are synthesized by enzymes of the RelA/SpoT homologue (Rsh) family, particularly under starvation conditions. Here, we study the effects of (p)ppGpp on the cell cycle of Caulobacter crescentus, an oligotrophic bacterium with a dimorphic life cycle. C. crescentus divides asymmetrically, producing a motile swarmer cell that cannot replicate its chromosome and a sessile stalked cell that is replication competent. The swarmer cell rapidly differentiates into a stalked cell in appropriate conditions. An artificial increase in the levels of (p)ppGpp in nonstarved C. crescentus cells was achieved by expressing a truncated relA gene from Escherichia coli, encoding a constitutively active (p)ppGpp synthetase. By combining single-cell microscopy, flow cytometry approaches, and swarming assays, we show that an increase in the intracellular concentration of (p)ppGpp is sufficient to slow down the swarmer-to-stalked cell differentiation process and to delay the initiation of chromosome replication. We also present evidence that the intracellular levels of two master regulators of the cell cycle of C. crescentus, DnaA and CtrA, are modulated in response to (p)ppGpp accumulation, even in the absence of actual starvation. CtrA proteolysis and DnaA synthesis seem indirectly inhibited by (p)ppGpp accumulation. By extending the life span of the motile nonreproductive swarmer cell and thus promoting dispersal and foraging functions over multiplication under starvation conditions, (p)ppGpp may play a central role in the ecological adaptation of C. crescentus to nutritional stresses.
Resumo:
BAFF deficiency in mice impairs B cell development beyond the transitional stage 1 in the spleen and thus severely reduces the size of follicular and marginal zone B cell compartments. Moreover, humoral immune responses in these mice are dramatically impaired. We now addressed the question whether the decrease in mature B cell numbers and the reduced humoral immune responses in BAFF-deficient mice could be overcome by the injection of recombinant BAFF. We therefore engineered a recombinant protein containing the human IgG1 Fc moiety fused to receptor-binding domain of human BAFF (Fc-BAFF). At 1 week after the second injection of this fusion protein a complete rescue of the marginal zone B cell compartment and a 50% rescue of the follicular B cell compartment was observed. Moreover these mice mounted a T cell-dependent humoral immune response indistinguishable from wild-type mice. By day 14 upon arrest of Fc-BAFF treatment mature B cell numbers in the blood dropped by 50%, indicating that the life span of mature B cells in the absence of BAFF is 14 days or less. Collectively these findings demonstrate that injection of Fc-BAFF in BAFF-deficient mice results in a temporary rescue of a functional mature B cell compartment.
Resumo:
RP 59500 is a new injectable streptogramin composed of two synergistic components (quinupristin and dalfopristin) which are active against erythromycin-susceptible and -resistant gram-positive pathogens. The present experiments compared the therapeutic efficacy of RP 59500 with that of vancomycin against experimental endocarditis due to either of two erythromycin-susceptible or two constitutively erythromycin-resistant isolates of methicillin-resistant Staphylococcus aureus. RP 59500 had low MICs for the four test organisms as well as for 24 additional isolates (the MIC at which 90% of the isolates were inhibited was < 1 mg/liter) which were mostly inducibly (47%) or constitutively (39%) erythromycin resistant. Aortic endocarditis in rats was produced with catheter-induced vegetations. Three-day therapy was initiated 12 h after infection, and the drugs were delivered via a computerized pump, which permitted the mimicking of the drug kinetics produced in human serum by twice-daily intravenous injections of 7 mg of RP 59500 per kg of body weight or 1 g of vancomycin. Both antibiotics reduced vegetation bacterial titers to below detection levels in ca. 70% of animals infected with the erythromycin-susceptible isolates (P < 0.05 compared with titers in controls). Vancomycin was also effective against the constitutively resistant strains, but RP 59500 failed against these isolates. Further experiments proved that RP 59500 failures were related to the very short life span of dalfopristin in serum (< or = 2 h, compared with > or = 6 h for quinupristin), since successful treatment was restored by artificially prolonging the dalfopristin levels for 6 h. Thus, RP 59500 is a promising alternative to vancomycin against methicillin-resistant S. aureus infections, provided that pharmacokinetic parameters are adjusted to afford prolonged levels of both of its constituents in serum. This observation is also relevant to humans, in whom the life span of dalfopristin in serum is also shorter than that of quinupristin.
Resumo:
Niche construction, by which organisms modify the environment in which they live, has been proposed to affect the evolution of many phenotypic traits. But what about the evolution of a niche constructing trait itself, whose expression changes the pattern of natural selection to which the trait is exposed in subsequent generations? This article provides an inclusive fitness analysis of selection on niche constructing phenotypes, which can affect their environment from local to global scales in arbitrarily spatially subdivided populations. The model shows that phenotypic effects of genes extending far beyond the life span of the actor can be affected by natural selection, provided they modify the fitness of those individuals living in the future that are likely to have inherited the niche construction lineage of the actor. Present benefits of behaviors are thus traded off against future indirect costs. The future costs will generally result from a complicated interplay of phenotypic effects, population demography and environmental dynamics. To illustrate these points, I derive the adaptive dynamics of a trait involved in the consumption of an abiotic resource, where resource abundance in future generations feeds back to the evolutionary dynamics of the trait.
Resumo:
Brain-derived neurotrophic factor (BDNF) is a protein capable of supporting the survival and fiber outgrowth of peripheral sensory neurons. It has been argued that histological detection of BDNF has proven difficult because of its low molecular weight and relatively low expression. In the present study we report that rapid removal of dorsal root ganglia (DRG) from the rat, followed by rapid freezing and appropriate fixation with cold acetone, preserves BDNF in situ without altering protein antigenicity. Under these conditions, specific BDNF-like immunoreactivity was detected in DRG both in vivo and in vitro. During DRG development in vivo, BDNF-like immunoreactivity (BDNF-LI) was observed only in a subset of sensory neurons. BDNF-LI was confined to small neurons, after neurons became morphologically distinct on the basis of size. BDNF-L immunoprecipitate was detected only in neuronal cells, and not in satellite or Schwann cells. While in vivo BDNF localization was restricted to small neurons, practically all neurons in DRG cell culture displayed BDNF-LI. Small or large primary afferent neurons exhibited a faint but clear BDNF-LI during the whole life span of cultures. Again, non-neuronal cells were devoid of BDNF-LI. In conclusion, in DRG in vivo, specific BDNF-LI was confined to small B sensory neurons. In contrast, all DRG sensory neurons displayed BDNF-LI in vitro. The finding that BDNF expressed in all DRG neurons in vitro but not in vivo suggests that BDNF expression may be modulated by environmental factors.