24 resultados para Masonry bridges.
Resumo:
Despite clear evidence of correlations between financial and medical statuses and decisions, most models treat financial and health-related choices separately. This article bridges this gap by proposing a tractable dynamic framework for the joint determination of optimal consumption, portfolio holdings, health investment, and health insurance. We solve for the optimal rules in closed form and capitalize on this tractability to gain a better understanding of the conditions under which separation between financial and health-related decisions is sensible, and of the pathways through which wealth and health determine allocations, welfare and other variables of interest such as expected longevity or the value of health. Furthermore we show that the model is consistent with the observed patterns of individual allocations and provide realistic estimates of the parameters that confirm the relevance of all the main characteristics of the model.
Resumo:
The news in addiction medicine for 2010 include somatic, neuroscientific as well as psychotherapeutic aspects. First are considered the risks of cardiac arythmy with methadone as long as the racemate form is prescribed in Switzerland. Then the neurosciences bring their usual novelties in the field of the addictions, this year in relational neuroscience and in the relationship between trauma and addiction. At last a contribution bridges the notion of low threshold treatment with the psychodynamic approach.
Resumo:
The theory of small-world networks as initiated by Watts and Strogatz (1998) has drawn new insights in spatial analysis as well as systems theory. The theoryâeuro?s concepts and methods are particularly relevant to geography, where spatial interaction is mainstream and where interactions can be described and studied using large numbers of exchanges or similarity matrices. Networks are organized through direct links or by indirect paths, inducing topological proximities that simultaneously involve spatial, social, cultural or organizational dimensions. Network synergies build over similarities and are fed by complementarities between or inside cities, with the two effects potentially amplifying each other according to the âeurooepreferential attachmentâeuro hypothesis that has been explored in a number of different scientific fields (Barabási, Albert 1999; Barabási A-L 2002; Newman M, Watts D, Barabà si A-L). In fact, according to Barabási and Albert (1999), the high level of hierarchy observed in âeurooescale-free networksâeuro results from âeurooepreferential attachmentâeuro, which characterizes the development of networks: new connections appear preferentially close to nodes that already have the largest number of connections because in this way, the improvement in the network accessibility of the new connection will likely be greater. However, at the same time, network regions gathering dense and numerous weak links (Granovetter, 1985) or network entities acting as bridges between several components (Burt 2005) offer a higher capacity for urban communities to benefit from opportunities and create future synergies. Several methodologies have been suggested to identify such denser and more coherent regions (also called communities or clusters) in terms of links (Watts, Strogatz 1998; Watts 1999; Barabási, Albert 1999; Barabási 2002; Auber 2003; Newman 2006). These communities not only possess a high level of dependency among their member entities but also show a low level of âeurooevulnerabilityâeuro, allowing for numerous redundancies (Burt 2000; Burt 2005). The SPANGEO project 2005âeuro"2008 (SPAtial Networks in GEOgraphy), gathering a team of geographers and computer scientists, has included empirical studies to survey concepts and measures developed in other related fields, such as physics, sociology and communication science. The relevancy and potential interpretation of weighted or non-weighted measures on edges and nodes were examined and analyzed at different scales (intra-urban, inter-urban or both). New classification and clustering schemes based on the relative local density of subgraphs were developed. The present article describes how these notions and methods contribute on a conceptual level, in terms of measures, delineations, explanatory analyses and visualization of geographical phenomena.
Resumo:
The EASL Monothematic Conference on Translational Research in Viral Hepatitis brought together a group of leading scientists and clinicians working on both, basic and clinical aspects of viral hepatitis, thereby building bridges from bench to bedside. This report recapitulates the presentations and discussions at the conference held in Lyon, France on November 29-30, 2013. In recent years, great advances have been made in the field of viral hepatitis, particularly in hepatitis C virus (HCV) infection. The identification of IL28B genetic polymorphisms as a major determinant for spontaneous and treatment-induced HCV clearance was a seminal discovery. Currently, hepatologists are at the doorstep of even greater advances, with the advent of a wealth of directly acting antivirals (DAAs) against HCV. Indeed, promising results have accumulated over the last months and few years, showing sustained virological response (SVR) rates of up to 100% with interferon-free DAA combination therapies. Thus, less than 25years after its identification, HCV infection may soon be curable in the vast majority of patients, highlighting the great success of HCV research over the last decades. However, viral hepatitis and its clinical complications such as liver cirrhosis and hepatocellular carcinoma (HCC) remain major global challenges. New therapeutic strategies to tackle hepatitis B virus (HBV) and hepatitis D virus (HDV) infection are needed, as current therapies have undeniable limitations. Nucleoside/nucleotide analogues (NUC) can efficiently control HBV replication and reduce or even reverse liver damage. However, these drugs have to be given for indefinite periods in most patients to maintain virological and biochemical responses. Although sustained responses off treatment can be achieved by treatment with (pegylated) interferon-α, only about 10-30% of patients effectively resolve chronic hepatitis B. It was the goal of this conference to review the progress made over the last years in chronic viral hepatitis research and to identify key questions that need to be addressed in order to close the gap between basic and clinical research and to develop novel preventive and treatment approaches for this most common cause of liver cirrhosis and HCC.
Resumo:
The corpus callosum (CC) is the major commissure that bridges the cerebral hemispheres. Agenesis of the CC is associated with human ciliopathies, but the origin of this default is unclear. Regulatory Factor X3 (RFX3) is a transcription factor involved in the control of ciliogenesis, and Rfx3-deficient mice show several hallmarks of ciliopathies including left-right asymmetry defects and hydrocephalus. Here we show that Rfx3-deficient mice suffer from CC agenesis associated with a marked disorganisation of guidepost neurons required for axon pathfinding across the midline. Using transplantation assays, we demonstrate that abnormalities of the mutant midline region are primarily responsible for the CC malformation. Conditional genetic inactivation shows that RFX3 is not required in guidepost cells for proper CC formation, but is required before E12.5 for proper patterning of the cortical septal boundary and hence accurate distribution of guidepost neurons at later stages. We observe focused but consistent ectopic expression of Fibroblast growth factor 8 (Fgf8) at the rostro commissural plate associated with a reduced ratio of GLIoma-associated oncogene family zinc finger 3 (GLI3) repressor to activator forms. We demonstrate on brain explant cultures that ectopic FGF8 reproduces the guidepost neuronal defects observed in Rfx3 mutants. This study unravels a crucial role of RFX3 during early brain development by indirectly regulating GLI3 activity, which leads to FGF8 upregulation and ultimately to disturbed distribution of guidepost neurons required for CC morphogenesis. Hence, the RFX3 mutant mouse model brings novel understandings of the mechanisms that underlie CC agenesis in ciliopathies.
Resumo:
The transcription factors TFIIB, Brf1, and Brf2 share related N-terminal zinc ribbon and core domains. TFIIB bridges RNA polymerase II (Pol II) with the promoter-bound preinitiation complex, whereas Brf1 and Brf2 are involved, as part of activities also containing TBP and Bdp1 and referred to here as Brf1-TFIIIB and Brf2-TFIIIB, in the recruitment of Pol III. Brf1-TFIIIB recruits Pol III to type 1 and 2 promoters and Brf2-TFIIIB to type 3 promoters such as the human U6 promoter. Brf1 and Brf2 both have a C-terminal extension absent in TFIIB, but their C-terminal extensions are unrelated. In yeast Brf1, the C-terminal extension interacts with the TBP/TATA box complex and contributes to the recruitment of Bdp1. Here we have tested truncated Brf2, as well as Brf2/TFIIB chimeric proteins for U6 transcription and for assembly of U6 preinitiation complexes. Our results characterize functions of various human Brf2 domains and reveal that the C-terminal domain is required for efficient association of the protein with U6 promoter-bound TBP and SNAP(c), a type 3 promoter-specific transcription factor, and for efficient recruitment of Bdp1. This in turn suggests that the C-terminal extensions in Brf1 and Brf2 are crucial to specific recruitment of Pol III over Pol II.
Resumo:
Studies of the structural basis of protein thermostability have produced a confusing picture. Small sets of proteins have been analyzed from a variety of thermophilic species, suggesting different structural features as responsible for protein thermostability. Taking advantage of the recent advances in structural genomics, we have compiled a relatively large protein structure dataset, which was constructed very carefully and selectively; that is, the dataset contains only experimentally determined structures of proteins from one specific organism, the hyperthermophilic bacterium Thermotoga maritima, and those of close homologs from mesophilic bacteria. In contrast to the conclusions of previous studies, our analyses show that oligomerization order, hydrogen bonds, and secondary structure play minor roles in adaptation to hyperthermophily in bacteria. On the other hand, the data exhibit very significant increases in the density of salt-bridges and in compactness for proteins from T.maritima. The latter effect can be measured by contact order or solvent accessibility, and network analysis shows a specific increase in highly connected residues in this thermophile. These features account for changes in 96% of the protein pairs studied. Our results provide a clear picture of protein thermostability in one species, and a framework for future studies of thermal adaptation.
Resumo:
Diagrams and tools help to support task modelling in engi- neering and process management. Unfortunately they are unfit to help in a business context at a strategic level, because of the flexibility needed for creative thinking and user friendly interactions. We propose a tool which bridges the gap between freedom of actions, encouraging creativity, and constraints, allowing validation and advanced features.
Resumo:
Morphogenesis emerges from complex multiscale interactions between genetic and mechanical processes. To understand these processes, the evolution of cell shape, proliferation and gene expression must be quantified. This quantification is usually performed either in full 3D, which is computationally expensive and technically challenging, or on 2D planar projections, which introduces geometrical artifacts on highly curved organs. Here we present MorphoGraphX ( www.MorphoGraphX.org), a software that bridges this gap by working directly with curved surface images extracted from 3D data. In addition to traditional 3D image analysis, we have developed algorithms to operate on curved surfaces, such as cell segmentation, lineage tracking and fluorescence signal quantification. The software's modular design makes it easy to include existing libraries, or to implement new algorithms. Cell geometries extracted with MorphoGraphX can be exported and used as templates for simulation models, providing a powerful platform to investigate the interactions between shape, genes and growth.