182 resultados para MICROSATELLITE
Resumo:
We report 21 new polymorphic microsatellite markers in the European barn owl (Tyto alba). The polymorphism of the reported markers was evaluated in a population situated in western Switzerland and in another from Tenerife, Canary Islands. The number of alleles per locus varies between two and 31, and expected heterozygosity per population ranges from 0.16 to 0.95. All loci are in Hardy-Weinberg equilibrium and no linkage disequilibrium was detected. Two loci exhibit a null allele in the Tenerife population.
Resumo:
We report 30 polymorphic microsatellite markers for five species of Palearctic green toads (Bufo viridis subgroup): 23 in the diploid B. latastii, 19 in diploid B. turanensis, 20 in diploid B. shaartusiensis, 27 in tetraploid B. pewzowi, and 30 in triploid B. baturae. Genetic diversity at these loci, measured for 10-18 individuals per species, ranged from 2 to 19 alleles. These microsatellite loci will be useful for conservation plans (genetic diversity, population structure, evolutionary units), inheritance patterns, and evolution of green toads.
Resumo:
We investigated dispersal patterns in the monogamous Crocidura russula, based both on direct field observations (mark-recapture data) and on genetic analyses (microsatellite loci). Natal dispersal was found to be low. Most juveniles settled within their natal territory or one immediately adjacent. Migration rate was estimated to two individuals per year and per population. The correlation between genetic and geographical distances over a 16 km transect implies that migration occurs over short ranges. Natal dispersal was restricted to first-litter juveniles weaned in early May; this result suggests a direct dependence of dispersal on reproductive opportunities. Natal dispersal was highly female biased, a pattern unusual among mammals. Its association with monogamy provides support for the resource-competition model of dispersal. Our results demonstrate that a state-biased dispersal can be directly inferred from microsatellite genotype distributions, which opens new perspectives for empirical studies in this area.
Resumo:
Two hundred and forty-five individuals of the common shrew (Sorex araneus, Insectivora, Mammalia) from 24 sampling localities situated in four different valleys of the western European Alps were genotyped for six microsatellite loci. Allelic variability ranged from 3 to 32 different alleles at a single locus and the average gene diversity over all loci was 0.69. An analysis for F and R statistics revealed weak genetic population subdivision (Fst = 0.032; Rst = 0.016). This suggests considerable gene flow and little phylogeographic structure within and between valleys. We tested whether a stepwise mutation model (SMM) better explained variation at the microsatellite loci than an infinite allele model (IAM). No trend in favor of either model was detected.
Resumo:
The extremely high rate of karyotypic evolution that characterizes the shrews of the Sorex araneus group makes this group an exceptionally interesting model for population genetics and evolutionary studies. Here, we attempted to map 46 microsatellite markers at the chromosome arm level using flow-sorted chromosomes from three karyotypically different taxa of the Sorex araneus group (S. granarius and the chromosome races Cordon and Novosibirsk of S. araneus). The most likely localizations were provided for 35 markers, among which 25 were each unambiguously mapped to a single locus on the corresponding chromosomes in the three taxa, covering the three sexual chromosomes (XY1Y2) and nine of the 18 autosomal arms of the S. araneus group. The results provide further evidence for a high degree of conservation in genome organization in the S. araneus group despite the presence of numerous Robertsonian rearrangements. These markers can therefore be used to compare the genetic structure among taxa of the S. araneus group at the chromosome level and to study the role of chromosomal rearrangements in the genetic diversification and speciation process of this group.
Resumo:
This study reports the isolation and characterization of seven highly polymorphic microsatellite loci in Silene vulgaris (Caryophyllaceae). The loci were isolated from two libraries constructed from genomic DNA enriched for CA and GA repeats. These markers yielded nine to 40 alleles per locus (mean 22.1) in a survey of 45 individuals from a single population located in the western Swiss Alps. Average observed heterozygosity ranged from 16.2 to 77.4%. These microsatellite loci should be valuable tools for studying fine-scale genetic structure.
Resumo:
Background and Aims The frequency at which males can be maintained with hermaphrodites in androdioecious populations is predicted to depend on the selfing rate, because self-fertilization by hermaphrodites reduces prospective siring opportunities for males. In particular, high selfing rates by hermaphrodites are expected to exclude males from a population. Here, the first estimates are provided of the mating system from two wild hexaploid populations of the androdioecious European wind-pollinated plant M. annua with contrasting male frequencies.Methods Four diploid microsatellite loci were used to genotype 19-20 progeny arrays from two populations of M. annua, one with males and one without. Mating-system parameters were estimated using the program MLTR.Key Results Both populations had similar, intermediate outcrossing rates (t(m) = 0.64 and 0.52 for the population with and without males, respectively). The population without males showed a lower level of correlated paternity and biparental inbreeding and higher allelic richness and gene diversity than the population with males.Conclusions The results demonstrate the utility of new diploid microsatellite loci for mating system analysis in a hexaploid plant. It would appear that androdioecious M. annua has a mixed-mating system in the wild, an uncommon finding for wind-pollinated species. This study sets a foundation for future research to assess the relative importance of the sexual system, plant-density variation and stochastic processes for the regulation of male frequencies in M. annua over space and time.
Resumo:
In social Hymenoptera (ants, bees, and wasps), the number of males that mate with the same queen affects social and genetic organization of the colony. However, the selective forces leading to single mating in certain conditions and multiple mating in others remain enigmatic. In this study, I investigated whether queens of the wood ant Formica paralugubris adopting different dispersal strategies varied in their mating frequency (the number of males with whom they mated). The frequency of multiple mating was determined by using microsatellite markers to genotype the sperm stored in the spermatheca of queens, and the validity of this method was confirmed by analysing mother-offspring combinations obtained from experimental single-queen colonies. Dispersing queens, which may found new colonies, did not mate with more males than queens that stayed within polygynous colonies, where the presence of numerous reproductive individuals ensured a high level of genetic diversity. Hence, this study provides no support to the hypotheses that multiple mating is beneficial because it increases genetic variability within colonies. Most of the F. paralugubris queens mated with a single male, whatever their dispersal strategy and life history. Moreover, multiple mating had little effect on colony genetic structure: the effective mating frequency was 1.11 when calculated from within-brood relatedness, and 1.13 when calculated from the number of mates detected in the sperm. Hence, occasional multiple mating by F. paralugubris queens may have no adaptive significance.
Resumo:
Molecular and genetic investigations in endometrial carcinogenesis may have prognostic and therapeutic implications. We studied the expression of EGFR, c-Met, PTEN and the mTOR signalling pathway (phospho-AKT/phospho-mTOR/phospho-RPS6) in 69 consecutive tumours and 16 tissue microarrays. We also analysed PIK3CA, K-Ras mutations and microsatellite instability (MSI). We distinguished two groups: group 1 (grade 1 and 2 endometrioid cancers) and group 2 (grade 3 endometrioid and type II clear and serous cell cancers). We hypothesised that these histological groups might have different features. We found that a) survival was higher in group 1 with less aggressive tumours (P⟨0.03); b) EGFR (P=0.01), PTEN and the AKT/mTOR/RPS6 signalling pathway were increased in group 1 versus group 2 (P=0.05 for phospho-mTOR); c) conversely, c-Met was higher (P⟨0.03) in group 2 than in group 1; d) In group 1, EGFR was correlated with c-Met, phospho-mTOR, phospho-RPS6 and the global activity of the phospho-AKT/phospho-mTOR/phospho-RPS6 pathway. In group 2, EGFR was correlated only with the phospho-AKT/phospho-mTOR/phospho-RPS6 pathway, whereas c-Met was correlated with PTEN; e) survival was higher for tumours with more than 50% PTEN-positive cells; f) K-RAS and PIK3CA mutations occurred in 10-12% of the available tumours and MSI in 40.4%, with a loss of MLH1 and PMS2 expression. Our results for endometrial cancers provide the first evidence for a difference in status between groups 1 and 2. The patients may benefit from different targeted treatments, anti-EGFR agents and rapamycin derivatives (anti-mTOR) for group 1 and an anti c-MET/ligand complex for group 2.
Resumo:
We constructed a microsatellite library from four Crocidura russula Y chromosome-specific bacterial artificial chromosome (BAC) clones. Only one of eight microsatellites was male-specific, despite genome walking to obtain more flanking sequence and testing of 93 primer combinations. Potential reasons for this low success are discussed. The male-specific locus, CRY3, was genotyped in 90 males, including C. russula from across the species range and two related species. The large difference in CRY3 allele size between eastern and western lineages supports earlier reports of high divergence between them. Despite polymorphism of CRY3 in Morocco, only one allele was found throughout the whole of Europe, consistent with previous studies that suggest recent colonization of Europe from a small number of Moroccan founders.
Resumo:
We describe the development based on 454 pyrosequencing technology of thirteen microsatellite markers for two closely related species of lamprey: Lampetra fluviatilis and L. planeri. The number of alleles per locus ranged from 2 to 5 in L. fluviatilis and from 2 to 6 in L. planeri. Gene diversity ranged from 0.062 to 0.718 in L. fluviatilis and from 0.322 to 0.677 in L. planeri. These markers will be helpful to study population genetic structure of both species and resolve their taxonomic status as separate species or ecotypes of a single species.
Resumo:
We have amplified a (CA)n:(GT)n microsatellite from the TNF promoters of a panel of mouse strains using the polymerase chain reaction. The length of the microsatellites was polymorphic, with eight alleles observed among 15 inbred strains bearing seven distinct H-2 haplotypes, and four outbred strains. In B10 congenic strains, the TNF allele detected by microsatellite polymorphism segregated with the MHC, and in recombinant haplotypes (NOD, NZW), it segregated with H-2D. The TNF allele found in the NZW strain (H-2z) was distinct from those of all other haplotypes, consistent with the hypothesis that this strain may carry a genetic defect in TNF production.
Resumo:
BACKGROUND: At least 2 apparently independent mechanisms, microsatellite instability (MSI) and chromosomal instability, are implicated in colorectal tumorigenesis. Their respective roles in predicting clinical outcomes of patients with T3N0 colorectal cancer remain unknown. METHODS: Eighty-eight patients with a sporadic T3N0 colon or rectal adenocarcinoma were followed up for a median of 67 months. For chromosomal instability analysis, Ki-ras mutations were determined by single-strand polymerase chain reaction, and p53 protein staining was studied by immunohistochemistry. For MSI analysis, DNA was amplified by polymerase chain reaction at 7 microsatellite targets (BAT25, BAT26, D17S250, D2S123, D5S346, transforming growth factor receptor II, and BAX). RESULTS: Overall 5-year survival rate was 72%. p53 protein nuclear staining was detected in 39 patients (44%), and MSI was detected in 21 patients (24%). MSI correlated with proximal location (P <.001) and mucinous content (P <.001). In a multivariate analysis, p53 protein expression carried a significant risk of death (relative risk = 4.0, 95% CI = 1.6 to 10.1, P =.004). By comparison, MSI was not a statistically significant prognostic factor for survival in this group (relative risk = 2.2, 95% CI = 0.6 to 7.3, P =.21). CONCLUSIONS: p53 protein overexpression provides better prognostic discrimination than MSI in predicting survival of patients with T3N0 colorectal cancer. Although MSI is associated with specific clinicopathologic parameters, it did not predict overall survival in this group. Assessment of p53 protein expression by immunocytochemistry provides a simple means to identify a subset of T3N0 patients with a 4-times increased risk for death.